0

0

数据结构之一组图让你搞懂时间复杂度

little bottle

little bottle

发布时间:2019-04-28 12:01:35

|

2421人浏览过

|

来源于CSDN

转载

 本篇文章中通过一组图片让你轻松明白什么是时间复杂度,有趣生动,具有一定学习价值,感兴趣的朋友快来了解一下吧。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

笔灵降AI
笔灵降AI

论文降AI神器,适配知网及维普!一键降至安全线,100%保留原文格式;无口语化问题,文风更学术,降后字数控制最佳!

下载

640?wx_fmt=png

时间复杂度的意义

 

究竟什么是时间复杂度呢?让我们来想象一个场景:某一天,小灰和大黄同时加入了一个公司......

640?wx_fmt=jpeg

一天过后,小灰和大黄各自交付了代码,两端代码实现的功能都差不多。大黄的代码运行一次要花100毫秒,内存占用5MB。小灰的代码运行一次要花100秒,内存占用500MB。于是......

640?wx_fmt=jpeg

640?wx_fmt=jpeg

由此可见,衡量代码的好坏,包括两个非常重要的指标:

1.运行时间;

2.占用空间。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=png

基本操作执行次数

 

关于代码的基本操作执行次数,我们用四个生活中的场景,来做一下比喻:

场景1:给小灰一条长10寸的面包,小灰每3天吃掉1寸,那么吃掉整个面包需要几天?

640?wx_fmt=jpeg

答案自然是 3 X 10 = 30天。

如果面包的长度是 N 寸呢?

此时吃掉整个面包,需要 3 X n = 3n 天。

如果用一个函数来表达这个相对时间,可以记作 T(n) = 3n。

场景2:给小灰一条长16寸的面包,小灰每5天吃掉面包剩余长度的一半,第一次吃掉8寸,第二次吃掉4寸,第三次吃掉2寸......那么小灰把面包吃得只剩下1寸,需要多少天呢?

这个问题翻译一下,就是数字16不断地除以2,除几次以后的结果等于1?这里要涉及到数学当中的对数,以2位底,16的对数,可以简写为log16。

因此,把面包吃得只剩下1寸,需要 5 X log16 = 5 X 4 = 20 天。

如果面包的长度是 N 寸呢?

需要 5 X logn = 5logn天,记作 T(n) = 5logn。

场景3:给小灰一条长10寸的面包和一个鸡腿,小灰每2天吃掉一个鸡腿。那么小灰吃掉整个鸡腿需要多少天呢?

640?wx_fmt=jpeg

答案自然是2天。因为只说是吃掉鸡腿,和10寸的面包没有关系 。

如果面包的长度是 N 寸呢?

无论面包有多长,吃掉鸡腿的时间仍然是2天,记作 T(n) = 2。

场景4:给小灰一条长10寸的面包,小灰吃掉第一个一寸需要1天时间,吃掉第二个一寸需要2天时间,吃掉第三个一寸需要3天时间.....每多吃一寸,所花的时间也多一天。那么小灰吃掉整个面包需要多少天呢?

答案是从1累加到10的总和,也就是55天。

如果面包的长度是 N 寸呢?

此时吃掉整个面包,需要 1+2+3+......+ n-1 + n = (1+n)*n/2 = 0.5n^2 + 0.5n。

记作 T(n) = 0.5n^2 + 0.5n。

640?wx_fmt=jpeg

上面所讲的是吃东西所花费的相对时间,这一思想同样适用于对程序基本操作执行次数的统计。刚才的四个场景,分别对应了程序中最常见的四种执行方式:

场景1:T(n) = 3n,执行次数是线性的。

void eat1(int n){
    for(int i=0; i<n; i++){;
        System.out.println("等待一天");
        System.out.println("等待一天");
        System.out.println("吃一寸面包");
    }
}
vo

场景2:T(n) = 5logn,执行次数是对数的。

void eat2(int n){
   for(int i=1; i<n; i*=2){
       System.out.println("等待一天");
       System.out.println("等待一天");
       System.out.println("等待一天");
       System.out.println("等待一天");
       System.out.println("吃一半面包");
   }
}

场景3:T(n) = 2,执行次数是常量的。

void eat3(int n){
   System.out.println("等待一天");
   System.out.println("吃一个鸡腿");
}

场景4:T(n) = 0.5n^2 + 0.5n,执行次数是一个多项式。

void eat4(int n){
   for(int i=0; i<n; i++){
       for(int j=0; j<i; j++){
           System.out.println("等待一天");
       }
       System.out.println("吃一寸面包");
   }
}

 

640?wx_fmt=png

渐进时间复杂度

 

有了基本操作执行次数的函数 T(n),是否就可以分析和比较一段代码的运行时间了呢?还是有一定的困难。

比如算法A的相对时间是T(n)= 100n,算法B的相对时间是T(n)= 5n^2,这两个到底谁的运行时间更长一些?这就要看n的取值了。

所以,这时候有了渐进时间复杂度(asymptotic time complectiy)的概念,官方的定义如下:

若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。

记作 T(n)= O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

渐进时间复杂度用大写O来表示,所以也被称为大O表示法。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

如何推导出时间复杂度呢?有如下几个原则:

  1. 如果运行时间是常数量级,用常数1表示;

  2. 只保留时间函数中的最高阶项;

  3. 如果最高阶项存在,则省去最高阶项前面的系数。

让我们回头看看刚才的四个场景。

场景1:

T(n) = 3n 

最高阶项为3n,省去系数3,转化的时间复杂度为:

T(n) =  O(n)

640?wx_fmt=png

场景2:

T(n) = 5logn 

最高阶项为5logn,省去系数5,转化的时间复杂度为:

T(n) =  O(logn)

640?wx_fmt=png

场景3:

T(n) = 2

只有常数量级,转化的时间复杂度为:

T(n) =  O(1)

640?wx_fmt=png

场景4:

T(n) = 0.5n^2 + 0.5n

最高阶项为0.5n^2,省去系数0.5,转化的时间复杂度为:

T(n) =  O(n^2)

640?wx_fmt=png

这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就可以得出结论:

O(1)

在编程的世界中有着各种各样的算法,除了上述的四个场景,还有许多不同形式的时间复杂度,比如:

O(nlogn), O(n^3), O(m*n),O(2^n),O(n!)

今后遨游在代码的海洋里,我们会陆续遇到上述时间复杂度的算法。

640?wx_fmt=png

 

640?wx_fmt=png

时间复杂度的巨大差异

640?wx_fmt=jpeg

640?wx_fmt=jpeg

我们来举过一个栗子:

算法A的相对时间规模是T(n)= 100n,时间复杂度是O(n)

算法B的相对时间规模是T(n)= 5n^2,时间复杂度是O(n^2)

算法A运行在小灰家里的老旧电脑上,算法B运行在某台超级计算机上,运行速度是老旧电脑的100倍。

那么,随着输入规模 n 的增长,两种算法谁运行更快呢?

640?wx_fmt=png

从表格中可以看出,当n的值很小的时候,算法A的运行用时要远大于算法B;当n的值达到1000左右,算法A和算法B的运行时间已经接近;当n的值越来越大,达到十万、百万时,算法A的优势开始显现,算法B则越来越慢,差距越来越明显。

这就是不同时间复杂度带来的差距。

640?wx_fmt=jpeg

想了解更多技术教程,请一定关注PHP中文网哦!

作者最新文章

jq是指什么?

2019-05-31 16:04

vue是做什么的

2019-05-31 16:58

mysql能干什么

2019-05-31 17:15

怎么用cmd进入mysql

2019-05-31 17:24

mysql怎么输入

2019-05-31 17:41

mysql免费版好用么

2019-05-31 17:53

mysql慢查询是什么

2019-05-31 18:00

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1553

2023.10.24

treenode的用法
treenode的用法

​在计算机编程领域,TreeNode是一种常见的数据结构,通常用于构建树形结构。在不同的编程语言中,TreeNode可能有不同的实现方式和用法,通常用于表示树的节点信息。更多关于treenode相关问题详情请看本专题下面的文章。php中文网欢迎大家前来学习。

541

2023.12.01

C++ 高效算法与数据结构
C++ 高效算法与数据结构

本专题讲解 C++ 中常用算法与数据结构的实现与优化,涵盖排序算法(快速排序、归并排序)、查找算法、图算法、动态规划、贪心算法等,并结合实际案例分析如何选择最优算法来提高程序效率。通过深入理解数据结构(链表、树、堆、哈希表等),帮助开发者提升 在复杂应用中的算法设计与性能优化能力。

27

2025.12.22

深入理解算法:高效算法与数据结构专题
深入理解算法:高效算法与数据结构专题

本专题专注于算法与数据结构的核心概念,适合想深入理解并提升编程能力的开发者。专题内容包括常见数据结构的实现与应用,如数组、链表、栈、队列、哈希表、树、图等;以及高效的排序算法、搜索算法、动态规划等经典算法。通过详细的讲解与复杂度分析,帮助开发者不仅能熟练运用这些基础知识,还能在实际编程中优化性能,提高代码的执行效率。本专题适合准备面试的开发者,也适合希望提高算法思维的编程爱好者。

39

2026.01.06

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

455

2023.08.14

pixiv网页版官网登录与阅读指南_pixiv官网直达入口与在线访问方法
pixiv网页版官网登录与阅读指南_pixiv官网直达入口与在线访问方法

本专题系统整理pixiv网页版官网入口及登录访问方式,涵盖官网登录页面直达路径、在线阅读入口及快速进入方法说明,帮助用户高效找到pixiv官方网站,实现便捷、安全的网页端浏览与账号登录体验。

473

2026.02.13

微博网页版主页入口与登录指南_官方网页端快速访问方法
微博网页版主页入口与登录指南_官方网页端快速访问方法

本专题系统整理微博网页版官方入口及网页端登录方式,涵盖首页直达地址、账号登录流程与常见访问问题说明,帮助用户快速找到微博官网主页,实现便捷、安全的网页端登录与内容浏览体验。

158

2026.02.13

Flutter跨平台开发与状态管理实战
Flutter跨平台开发与状态管理实战

本专题围绕Flutter框架展开,系统讲解跨平台UI构建原理与状态管理方案。内容涵盖Widget生命周期、路由管理、Provider与Bloc状态管理模式、网络请求封装及性能优化技巧。通过实战项目演示,帮助开发者构建流畅、可维护的跨平台移动应用。

64

2026.02.13

TypeScript工程化开发与Vite构建优化实践
TypeScript工程化开发与Vite构建优化实践

本专题面向前端开发者,深入讲解 TypeScript 类型系统与大型项目结构设计方法,并结合 Vite 构建工具优化前端工程化流程。内容包括模块化设计、类型声明管理、代码分割、热更新原理以及构建性能调优。通过完整项目示例,帮助开发者提升代码可维护性与开发效率。

20

2026.02.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
PostgreSQL 教程
PostgreSQL 教程

共48课时 | 9.3万人学习

Django 教程
Django 教程

共28课时 | 4.4万人学习

Excel 教程
Excel 教程

共162课时 | 17.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号