0

0

ERFNet:用于实时语义分割的高效残差分解卷积神经网络

P粉084495128

P粉084495128

发布时间:2025-07-17 16:36:24

|

840人浏览过

|

来源于php中文网

原创

语义分割是一项具有挑战性的任务,它以统一的方式解决智能车辆的大部分感知需求。深度神经网络擅长这项任务,因为它们可以进行端到端训练,以在像素级别准确分类图像中的多个对象类别。然而,在最先进的语义分割方法中还没有在高质量和计算资源之间进行良好的权衡,这限制了它们在实际车辆中的应用。而ERFNet是一种深度架构,该架构能够实时运行的同时提供准确的语义分割。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

erfnet:用于实时语义分割的高效残差分解卷积神经网络 - php中文网

用于实时语义分割的高效残差分解卷积神经网络

语义分割是一项具有挑战性的任务,它以统一的方式解决智能车辆的大部分感知需求。深度神经网络擅长这项任务,因为它们可以进行端到端训练,以在像素级别准确分类图像中的多个对象类别。然而,在最先进的语义分割方法中还没有在高质量和计算资源之间进行良好的权衡,这限制了它们在实际车辆中的应用。而ERFNet是一种深度架构,该架构能够实时运行的同时提供准确的语义分割。

参考资料:

  • Efficient ConvNet for Real-time Semantic Segmentation
  • 2020中国华录杯数据湖算法大赛(车道检测赛道)冠军方案

一、数据集简介

本项目使用的是第17届全国大学生智能汽车竞赛完全模型组线上资格赛的数据集。本次大赛提供3类共计16000张图像数据。

ERFNet:用于实时语义分割的高效残差分解卷积神经网络 - php中文网

该数据集采用单通道标注图片,每一种像素值代表一种类别,像素标注类别从0开始递增,即0,1,2,3这4种类别,分别为背景、实车道线、虚车道线、斑马线。

In [2]
# 解压数据集!unzip -q data/data125507/car_data_2022.zip -d data/data125507/

二、模型组网

ERFNet旨在解决通常采用的残差层版本中固有的效率限制,该残差层用于最近几个在分类和分割任务中达到最高精度的ConvNet。与现有体系结构相比,该体系结构更有效地利用了参数,使网络在保持最高效率的同时获得了非常高的分割精度。

ERFNet的网络架构是编码-解码器架构。与像FCN架构相反,在这种架构中,不同层的特征映射需要被融合,以获得一个细腻的输出。

ERFNet:用于实时语义分割的高效残差分解卷积神经网络 - php中文网

1.残差分解块

ResNet提出了两种残差模块,其结构如下图里的a、b所示。两者有着相似的参数和接近的精度。但是,bottleneck需要更少的计算资源,随着深度增加这个特点更加划算,因此更加通用。但是,non-bottleneck模块能够获得更好的精度,并且bottleneck仍存在退化问题。

ERFNet:用于实时语义分割的高效残差分解卷积神经网络 - php中文网

于是ERFNet的作者提出了一个新的版本,如上图c所示。其代码如下所示:

Decktopus AI
Decktopus AI

AI在线生成高质量演示文稿

下载
In [2]
import paddleclass non_bottleneck_1d(paddle.nn.Layer):
    def __init__(self, chann, dropprob, dilated):
        super().__init__()
        self.conv3x1_1 = paddle.nn.Conv2D(in_channels=chann, out_channels=chann, kernel_size=(3, 1), stride=1, padding=(1, 0), bias_attr=True)
        self.conv1x3_1 = paddle.nn.Conv2D(in_channels=chann, out_channels=chann, kernel_size=(1, 3), stride=1, padding=(0, 1), bias_attr=True)
        self.bn1 = paddle.nn.BatchNorm(chann, epsilon=1e-03)
        self.conv3x1_2 = paddle.nn.Conv2D(in_channels=chann, out_channels=chann, kernel_size=(3, 1), stride=1, padding=(1 * dilated, 0), bias_attr=True,
                                              dilation=(dilated, 1))
        self.conv1x3_2 = paddle.nn.Conv2D(in_channels=chann, out_channels=chann, kernel_size=(1, 3), stride=1, padding=(0, 1 * dilated), bias_attr=True,
                                              dilation=(1, dilated))
        self.bn2 = paddle.nn.BatchNorm(chann, epsilon=1e-03)
        self.dropout = paddle.nn.Dropout(dropprob)
        self.p = dropprob    def forward(self, input):
        output = self.conv3x1_1(input)
        output = paddle.nn.functional.relu(output)
        output = self.conv1x3_1(output)
        output = self.bn1(output)
        output = paddle.nn.functional.relu(output)
        output = self.conv3x1_2(output)
        output = paddle.nn.functional.relu(output)
        output = self.conv1x3_2(output)
        output = self.bn2(output)        if self.p != 0:
            output = self.dropout(output)        return paddle.nn.functional.relu(output + input)

2.编码器

下采样虽然获得了粗糙的输出,但降低了计算量,网络进行了三次下采样,并借鉴了ENet的早期下采样模式:即将2x2的最大池化和3x3卷积(步长为2)concat在一起。并且在提出的resnet block上交错使用空洞卷积,以获得更多的信息。

其代码如下所示:

In [3]
class DownsamplerBlock(paddle.nn.Layer):
    def __init__(self, ninput, noutput):
        super().__init__()
        self.conv = paddle.nn.Conv2D(in_channels=ninput, out_channels=noutput-ninput, kernel_size=3,
                                     stride=2, padding=1, bias_attr=True)
        self.pool = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
        self.bn = paddle.nn.BatchNorm(noutput, epsilon=1e-3)    def forward(self, input):
        output = paddle.concat(x=[self.conv(input), self.pool(input)], axis=1)
        output = self.bn(output)        return paddle.nn.functional.relu(output)class Encoder(paddle.nn.Layer):
    def __init__(self, num_classes):
        super().__init__()
        self.initial_block = DownsamplerBlock(3, 16)
        self.layers = paddle.nn.LayerList()
        self.layers.append(DownsamplerBlock(16, 64))        for x in range(0, 5):  # 5 times
            self.layers.append(non_bottleneck_1d(64, 0.1, 1))
        self.layers.append(DownsamplerBlock(64, 128))        for x in range(0, 2):  # 2 times
            self.layers.append(non_bottleneck_1d(128, 0.1, 2))
            self.layers.append(non_bottleneck_1d(128, 0.1, 4))
            self.layers.append(non_bottleneck_1d(128, 0.1, 8))
            self.layers.append(non_bottleneck_1d(128, 0.1, 16))        # only for encoder mode:
        self.output_conv = paddle.nn.Conv2D(in_channels=128, out_channels=num_classes, kernel_size=1, stride=1, padding=0, bias_attr=True)    def forward(self, input, predict=False):
        output = self.initial_block(input)        for layer in self.layers:
            output = layer(output)        if predict:
            output = self.output_conv(output)        return output

3.解码器

上采样部分仅有调节细腻度并与输入匹配的作用,采用了和ENet类似的架构。不同的是,没有采用ENet的最大反池化,而是采用了简单的步长为2的反卷积。

In [ ]
class UpsamplerBlock(paddle.nn.Layer):
    def __init__(self, ninput, noutput, output_size=[16, 16]):
        super().__init__()
        self.conv = paddle.nn.Conv2DTranspose(ninput, noutput, kernel_size=3, stride=2, padding=1, bias_attr=True)
        self.bn = paddle.nn.BatchNorm(noutput, epsilon=1e-3)
        self.output_size = output_size    def forward(self, input):
        output = self.conv(input, output_size=self.output_size)
        output = self.bn(output)        return paddle.nn.functional.relu(output)class Decoder(paddle.nn.Layer):
    def __init__(self, num_classes, raw_size=[576, 1640]):
        super().__init__()
        self.layers = paddle.nn.LayerList()
        self.raw_size = raw_size
        self.layers.append(UpsamplerBlock(128, 64, output_size=[raw_size[0] // 4, raw_size[1] // 4]))
        self.layers.append(non_bottleneck_1d(64, 0, 1))
        self.layers.append(non_bottleneck_1d(64, 0, 1))
        self.layers.append(UpsamplerBlock(64, 16, output_size=[raw_size[0] // 2, raw_size[1] // 2]))
        self.layers.append(non_bottleneck_1d(16, 0, 1))
        self.layers.append(non_bottleneck_1d(16, 0, 1))
        self.output_conv = paddle.nn.Conv2DTranspose(16, num_classes, kernel_size=2, stride=2, padding=0, bias_attr=True)    def forward(self, input):
        output = input
        for layer in self.layers:
            output = layer(output)
        output = self.output_conv(output, output_size=[self.raw_size[0], self.raw_size[1]])        return output

4.完整ERFNet

完整的ERFNet的代码如下所示:

In [ ]
class ERFNet(paddle.nn.Layer):
    def __init__(self, num_classes, raw_size=[576, 1640]):
        super().__init__()
        self.encoder = Encoder(num_classes)
        self.decoder = Decoder(num_classes, raw_size=raw_size)    def forward(self, input):
        output = self.encoder(input)        return self.decoder.forward(output)

三、模型训练

为了方便各位开发者运行,这里加载了在Cityscape数据集上预训练的权重,大家可以基于该权重做预训练。

In [3]
!python Lane-Detection-with-ERFNet/train_erfnet_paddle.py --epochs 1 -b 8 --lr 0.01
W0305 21:12:08.735818   621 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W0305 21:12:08.741001   621 device_context.cc:465] device: 0, cuDNN Version: 7.6.
=> pretrained model loaded successfully
Epoch: [0][199/1600], lr: 0.00000 Time 1.044 (1.223) Data 0.0003 (0.4569) Loss 1.0267 (1.1224)
Epoch: [0][399/1600], lr: 0.01000 Time 1.557 (1.268) Data 1.0433 (0.5760) Loss 1.1810 (1.0765)
Epoch: [0][599/1600], lr: 0.00000 Time 1.319 (1.322) Data 0.8051 (0.6646) Loss 0.7047 (0.9411)
Epoch: [0][799/1600], lr: 0.01000 Time 1.508 (1.268) Data 0.9931 (0.5015) Loss 0.8654 (0.8181)
Epoch: [0][999/1600], lr: 0.00000 Time 1.539 (1.262) Data 1.0248 (0.4835) Loss 0.6578 (0.6222)
Epoch: [0][1199/1600], lr: 0.01000 Time 1.397 (1.261) Data 0.8822 (0.4821) Loss 0.4555 (0.5395)
Epoch: [0][1399/1600], lr: 0.00000 Time 1.411 (1.256) Data 0.8975 (0.4768) Loss 0.3137 (0.4068)
Epoch: [0][1599/1600], lr: 0.01000 Time 1.394 (1.254) Data 0.8796 (0.4755) Loss 0.4796 (0.4184)
Test: [199/1000] Time 0.121 (0.142) Pixels Acc 0.839 mIoU 0.500
Test: [399/1000] Time 0.122 (0.140) Pixels Acc 0.835 mIoU 0.499
Test: [599/1000] Time 0.123 (0.140) Pixels Acc 0.841 mIoU 0.507
Test: [799/1000] Time 0.124124 (0.140) Pixels Acc 0.843 mIoU 0.512
Test: [999/1000] Time 0.118 (0.140) Pixels Acc 0.839 mIoU 0.513
Testing Results: Pixels Acc 0.839	mIoU 0.513 (0.5128)

训练1轮后,平均交并比为51.3%.

四、效果测试

下面我们来测试下训练了10轮的模型效果。

In [4]
!python Lane-Detection-with-ERFNet/test_erfnet_paddle.py --resume Lane-Detection-with-ERFNet/trained/erfnet_best.pdparams
W0305 21:49:27.301187  3291 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W0305 21:49:27.306970  3291 device_context.cc:465] device: 0, cuDNN Version: 7.6.
=> loading checkpoint 'Lane-Detection-with-ERFNet/trained/erfnet_best.pdparams'
=> checkpoint loaded successfully
Test: [400/3200]	Time 0.122 (0.103)	
Test: [800/3200]	Time 0.135 (0.102)	
Test: [1200/3200]	Time 0.085 (0.102)	
Test: [1600/3200]	Time 0.093 (0.102)	
Test: [2000/3200]	Time 0.085 (0.103)	
Test: [2400/3200]	Time 0.130 (0.103)	
Test: [2800/3200]	Time 0.084 (0.104)	
Test: [3200/3200]	Time 0.083 (0.104)	
finished, #test:3200

可视化输出

模型的输出结果跟数据集的标签都是单通道的图像,因此直接打开的话就是一张黑黑的图像,如果想要看清输出结果,可以将输出结果转换成灰度图:

In [6]
%matplotlib inlineimport cv2import numpy as npimport matplotlib.pyplot as plt

index = 10001image = cv2.imread("data/data125507/car_data_2022/JPEGImages/0{}.jpg".format(index))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
result = cv2.imread("results/result/{}.png".format(index))
result = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
plt.imshow(image)
plt.show()
plt.imshow(result)
plt.show()
In [ ]
%cd /home/aistudio/submission/
!python predict.py data.txt result.json

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

404

2023.08.14

C++ 高级模板编程与元编程
C++ 高级模板编程与元编程

本专题深入讲解 C++ 中的高级模板编程与元编程技术,涵盖模板特化、SFINAE、模板递归、类型萃取、编译时常量与计算、C++17 的折叠表达式与变长模板参数等。通过多个实际示例,帮助开发者掌握 如何利用 C++ 模板机制编写高效、可扩展的通用代码,并提升代码的灵活性与性能。

10

2026.01.23

php远程文件教程合集
php远程文件教程合集

本专题整合了php远程文件相关教程,阅读专题下面的文章了解更多详细内容。

28

2026.01.22

PHP后端开发相关内容汇总
PHP后端开发相关内容汇总

本专题整合了PHP后端开发相关内容,阅读专题下面的文章了解更多详细内容。

21

2026.01.22

php会话教程合集
php会话教程合集

本专题整合了php会话教程相关合集,阅读专题下面的文章了解更多详细内容。

20

2026.01.22

宝塔PHP8.4相关教程汇总
宝塔PHP8.4相关教程汇总

本专题整合了宝塔PHP8.4相关教程,阅读专题下面的文章了解更多详细内容。

11

2026.01.22

PHP特殊符号教程合集
PHP特殊符号教程合集

本专题整合了PHP特殊符号相关处理方法,阅读专题下面的文章了解更多详细内容。

11

2026.01.22

PHP探针相关教程合集
PHP探针相关教程合集

本专题整合了PHP探针相关教程,阅读专题下面的文章了解更多详细内容。

8

2026.01.22

菜鸟裹裹入口以及教程汇总
菜鸟裹裹入口以及教程汇总

本专题整合了菜鸟裹裹入口地址及教程分享,阅读专题下面的文章了解更多详细内容。

52

2026.01.22

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 17.3万人学习

Django 教程
Django 教程

共28课时 | 3.4万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号