0

0

C#通过KD树进行距离最近点的查找的实例分析

黄舟

黄舟

发布时间:2017-10-05 15:32:02

|

2241人浏览过

|

来源于php中文网

原创

这篇文章主要为大家详细介绍了c#通过kd树进行距离最近点的查找,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文首先介绍Kd-Tree的构造方法,然后介绍Kd-Tree的搜索流程及代码实现,最后给出本人利用C#语言实现的二维KD树代码。这也是我自己动手实现的第一个树形的数据结构。理解上难免会有偏差,敬请各位多多斧正。

1. KD树介绍

Kd-Tree(KD树),即K-dimensional tree,是一种高维索引树形数据结构,常用于在大规模的高维数据空间进行最邻近查找和近似最邻近查找。我实现的KD树是二维的Kd - tree。目的是在点集中寻找最近点。参考资料是Kd-Tree的百度百科。并且根据百度百科的逻辑组织了代码。

2. KD树的数学解释

3. KD树的构造方法

这里是用的二维点集进行构造Kd-tree。三维的与此类似。
树中每个节点的数据类型:


public class KDTreeNode
  {
    /// <summary>
    /// 分裂点
    /// </summary>
    public Point pisionPoint { get; set; }

    /// <summary>
    /// 分裂类型
    /// </summary>
    public EnumpisionType pisionType { get; set; }

    /// <summary>
    /// 左子节点
    /// </summary>
    public KDTreeNode LeftChild { get; set; }

    /// <summary>
    /// 右子节点
    /// </summary>
    public KDTreeNode RightChild { get; set; }
  }

3.1 KD树构造逻辑流程

  • 将所有的点放入集合a中

  • 对集合所有点的X坐标求得方差xv,Y坐标求得方差yv

  • 如果xv > yv,则对集合a根据X坐标进行排序。如果 yv > xv,则对集合a根据y坐标进行排序。

  • 得到排序后a集合的中位数m。则以m为断点,将[0,m-2]索引的点放到a1集合中。将[m,a.count]索引的点放到a2的集合中(m点的索引为m-1)。

  • 构建节点,节点的值为a[m-1],如果操作集合中节点的个数大于1,则左节点对[0,m-2]重复2-5步,右节点为对[m,a.count]重复2-5步;反之,则该节点为叶子节点。

3.2 代码实现

Dream Machine
Dream Machine

Dream Machine 是由 Luma AI 开发的一款 AI 视频生成工具,可以快速将文本和图像转换为高质量的视频内容。

下载


private KDTreeNode CreateTreeNode(List<Point> pointList)
{
  if (pointList.Count > 0)
  {
    // 计算方差
    double xObtainVariance = ObtainVariance(CreateXList(pointList));
    double yObtainVariance = ObtainVariance(CreateYList(pointList));

    // 根据方差确定分裂维度
    EnumpisionType pisionType = SortListByXOrYVariances(xObtainVariance,    yObtainVariance, ref pointList);

    // 获得中位数
    Point medianPoint = ObtainMedian(pointList);
    int medianIndex = pointList.Count / 2;

    // 构建节点
    KDTreeNode treeNode = new KDTreeNode()
    {
      pisionPoint = medianPoint,
      pisionType = pisionType,
      LeftChild = CreateTreeNode(pointList.Take(medianIndex).ToList()),
      RightChild = CreateTreeNode(pointList.Skip(medianIndex + 1).ToList())
    };
    return treeNode;
  }
  else
  {
    return null;
  }
}

4. KD树搜索方法

Kd-Tree的总体搜索流程先根据普通的查找找到一个最近的叶子节点。但是这个叶子节点不一定是最近的点。再进行回溯的操作找到最近点。

4.1 KD树搜索逻辑流程

  • 对于根据点集构建的树t,以及查找点p.将根节点作为节点t进行如下的操作

  • 如果t为叶子节点。则得到最近点n的值为t的分裂点的值,跳到第5步;如果t不是叶子节点,进行第3步

  • 则确定t的分裂方式,如果是按照x轴进行分裂,则用p的x值与节点的分裂点的x值进行比较,反之则进行Y坐标的比较

  • 如果p的比较值小于t的比较值,则将t指定为t的左孩子节点。反之将t指定为t的右孩子节点,执行第2步

  • 定义检索点m,将m设置为n

  • 计算m与p的距离d1,n与m的距离d2。

  • 如果d1 >= d2且有父节点,则将m的父节点作为m的值执行5步,若没有父节点,则得到真正的最近点TN; 如果d1

  • 若n有兄弟节点,则 n = n的兄弟节点;若n没有兄弟节点,则 n = n的父节点。删除原来的n节点。将m的值设置为新的n节点;执行第6步。

4.2 代码实现


public Point FindNearest(Point searchPoint)
{
  // 按照查找方式寻找最近点
  Point nearestPoint = DFSSearch(this.rootNode, searchPoint);
  
  // 进行回溯
  return BacktrcakSearch(searchPoint, nearestPoint);
}


private Point DFSSearch(KDTreeNode node,Point searchPoint,bool pushStack = true)
{
  if(pushStack == true)
  {
    // 利用堆栈记录查询的路径,由于树节点中没有记载父节点的原因
    backtrackStack.Push(node);
  }
  if (node.pisionType == EnumpisionType.X)
  {
    return DFSXsearch(node,searchPoint);
  }
  else
  {
    return DFSYsearch(node, searchPoint);
  }
}

private Point BacktrcakSearch(Point searchPoint,Point nearestPoint)
{
  // 如果记录路径的堆栈为空则表示已经回溯到根节点,则查到的最近点就是真正的最近点
  if (backtrackStack.IsEmpty())
  {
    return nearestPoint;
  }
  else
  {
    KDTreeNode trackNode = backtrackStack.Pop();
    
    // 分别求回溯点与最近点距查找点的距离
    double backtrackDistance = ObtainDistanFromTwoPoint(searchPoint,     trackNode.pisionPoint);
    double nearestPointDistance = ObtainDistanFromTwoPoint(searchPoint, nearestPoint);
    
    if (backtrackDistance < nearestPointDistance)
    {
      // 深拷贝节点的目的是为了避免损坏树
      KDTreeNode searchNode = new KDTreeNode()
      {
        pisionPoint = trackNode.pisionPoint,
        pisionType = trackNode.pisionType,
        LeftChild = trackNode.LeftChild,
        RightChild = trackNode.RightChild
      };
      nearestPoint = DFSBackTrackingSearch(searchNode, searchPoint);
   }
   // 递归到根节点
   return BacktrcakSearch(searchPoint, nearestPoint);
  }
}

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
pixiv网页版官网登录与阅读指南_pixiv官网直达入口与在线访问方法
pixiv网页版官网登录与阅读指南_pixiv官网直达入口与在线访问方法

本专题系统整理pixiv网页版官网入口及登录访问方式,涵盖官网登录页面直达路径、在线阅读入口及快速进入方法说明,帮助用户高效找到pixiv官方网站,实现便捷、安全的网页端浏览与账号登录体验。

139

2026.02.13

微博网页版主页入口与登录指南_官方网页端快速访问方法
微博网页版主页入口与登录指南_官方网页端快速访问方法

本专题系统整理微博网页版官方入口及网页端登录方式,涵盖首页直达地址、账号登录流程与常见访问问题说明,帮助用户快速找到微博官网主页,实现便捷、安全的网页端登录与内容浏览体验。

94

2026.02.13

Flutter跨平台开发与状态管理实战
Flutter跨平台开发与状态管理实战

本专题围绕Flutter框架展开,系统讲解跨平台UI构建原理与状态管理方案。内容涵盖Widget生命周期、路由管理、Provider与Bloc状态管理模式、网络请求封装及性能优化技巧。通过实战项目演示,帮助开发者构建流畅、可维护的跨平台移动应用。

31

2026.02.13

TypeScript工程化开发与Vite构建优化实践
TypeScript工程化开发与Vite构建优化实践

本专题面向前端开发者,深入讲解 TypeScript 类型系统与大型项目结构设计方法,并结合 Vite 构建工具优化前端工程化流程。内容包括模块化设计、类型声明管理、代码分割、热更新原理以及构建性能调优。通过完整项目示例,帮助开发者提升代码可维护性与开发效率。

13

2026.02.13

Redis高可用架构与分布式缓存实战
Redis高可用架构与分布式缓存实战

本专题围绕 Redis 在高并发系统中的应用展开,系统讲解主从复制、哨兵机制、Cluster 集群模式及数据分片原理。内容涵盖缓存穿透与雪崩解决方案、分布式锁实现、热点数据优化及持久化策略。通过真实业务场景演示,帮助开发者构建高可用、可扩展的分布式缓存系统。

17

2026.02.13

c语言 数据类型
c语言 数据类型

本专题整合了c语言数据类型相关内容,阅读专题下面的文章了解更多详细内容。

27

2026.02.12

雨课堂网页版登录入口与使用指南_官方在线教学平台访问方法
雨课堂网页版登录入口与使用指南_官方在线教学平台访问方法

本专题系统整理雨课堂网页版官方入口及在线登录方式,涵盖账号登录流程、官方直连入口及平台访问方法说明,帮助师生用户快速进入雨课堂在线教学平台,实现便捷、高效的课程学习与教学管理体验。

11

2026.02.12

豆包AI网页版入口与智能创作指南_官方在线写作与图片生成使用方法
豆包AI网页版入口与智能创作指南_官方在线写作与图片生成使用方法

本专题汇总豆包AI官方网页版入口及在线使用方式,涵盖智能写作工具、图片生成体验入口和官网登录方法,帮助用户快速直达豆包AI平台,高效完成文本创作与AI生图任务,实现便捷智能创作体验。

368

2026.02.12

PostgreSQL性能优化与索引调优实战
PostgreSQL性能优化与索引调优实战

本专题面向后端开发与数据库工程师,深入讲解 PostgreSQL 查询优化原理与索引机制。内容包括执行计划分析、常见索引类型对比、慢查询优化策略、事务隔离级别以及高并发场景下的性能调优技巧。通过实战案例解析,帮助开发者提升数据库响应速度与系统稳定性。

27

2026.02.12

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
C# 教程
C# 教程

共94课时 | 9.5万人学习

python编程入门系列图文教程
python编程入门系列图文教程

共65课时 | 24.8万人学习

vscode其实很简单
vscode其实很简单

共72课时 | 29.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号