0

0

【AAAI 2024】DFFormer:基于快速傅里叶变换的视觉动态令牌混合器

P粉084495128

P粉084495128

发布时间:2025-08-01 09:57:14

|

213人浏览过

|

来源于php中文网

原创

本文提出基于FFT的动态滤波器令牌混合器DFFormer及混合模型CDFFormer,改进GFNet的自适应能力。动态滤波器结合CondConv思想生成,通过非线性函数预测权重并加权求和。实验显示,CDFFormer在图像识别达85.0%Top-1准确率,高分辨率处理时吞吐量和存储效率优于部分先进架构。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【aaai 2024】dfformer:基于快速傅里叶变换的视觉动态令牌混合器 - php中文网

DFFormer:基于快速傅里叶变换的视觉动态令牌混合器

摘要

        在计算机视觉领域,具有多头自注意力(MHSA)的模型取得了显著的性能。 它们的计算复杂度与输入特征图中像素的二次方成正比,导致处理速度慢,尤其是在处理高分辨率图像时。 提出了一种新的令牌混合器来代替MHSA来解决这个问题:一种基于FFT的令牌混合器,它在全局操作上与MHSA相似,但计算复杂度较低。 然而,尽管基于FFT的令牌混合器具有诱人的特性,但它与快速发展的MetaFormer体系结构的兼容性还没有得到仔细的研究。 在此,我们提出了一种新的令牌混合器,称为动态滤波器和DFformer和CDFformer,利用动态滤波器的图像识别模型来弥补上述差距。 CDFformer获得了85.0%的Top-1准确率,接近卷积和MHSA的混合架构。 其他广泛的实验和分析,包括对象检测和语义分割,证明它们与最先进的体系结构是有竞争力的; 在处理高分辨率图像识别时,它们的吞吐量和存储效率是卷积和MHSA,与ConvFormer相差不大,远优于CAFormer。 我们的结果表明,动态滤波器是值得认真考虑的令牌混合器选项之一。

1. DFFormer

        本文针对之前的GFNet无法自适应输入进行改进,结合CondConv提出了一种新的动态滤波器,动态滤波器的总体操作为:

D(X)=F1(KM(X)FA(X))D(X)=F−1(KM(X)⊙F∘A(X))

        动态滤波器生成,主要思路与CondConv差不多,即使用一个非线性函数对滤波器权重进行预测,然后将多个滤波器进行加权求和,公式如下所示:

KM(X)c,:,::=i=1N(es(c1)N+in=1Nes(c1)N+n)Ki, where (s1,,sNC)=M(h,wX:,h,wHW).KM(X)c,:,::=∑i=1N(∑n=1Nes(c−1)N+nes(c−1)N+i)Ki, where (s1,…,sNC′)⊤=M(HW∑h,wX:,h,w).

SuperDesign
SuperDesign

开源的UI设计AI智能体

下载

        滤波器权重生成公式如下所示:

M(X)=W2StarReLU(W1LN(X))M(X)=W2StarReLU(W1LN(X))

        进而本文基于提出的DFFormer和ConvFormer提出了一种新的混合模型——CDFFormer。

【AAAI 2024】DFFormer:基于快速傅里叶变换的视觉动态令牌混合器 - php中文网        

2. 代码复现

2.1 下载并导入所需的库

In [ ]
%matplotlib inlineimport paddleimport numpy as npimport matplotlib.pyplot as pltfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport osimport matplotlib.pyplot as pltfrom matplotlib.pyplot import figurefrom functools import partial
   

2.2 创建数据集

In [3]
train_tfm = transforms.Compose([
    transforms.RandomResizedCrop(224, scale=(0.6, 1.0)),
    transforms.ColorJitter(brightness=0.2,contrast=0.2, saturation=0.2),
    transforms.RandomHorizontalFlip(0.5),
    transforms.RandomRotation(20),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

test_tfm = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
   
In [4]
paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm, )
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))
       
train_dataset: 50000
val_dataset: 10000
       
In [5]
batch_size=128
   
In [6]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)
   

2.3 模型的创建

2.3.1 标签平滑

In [7]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()
   

2.3.2 DropPath

In [8]
def drop_path(x, drop_prob=0.0, training=False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0.0 or not training:        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor    return outputclass DropPath(nn.Layer):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
   

2.3.3 DFFormer模型的创建

In [9]
class Downsampling(nn.Layer):
    """
    Downsampling implemented by a layer of convolution.
    """

    def __init__(self, in_channels, out_channels,
                 kernel_size, stride=1, padding=0,
                 pre_norm=None, post_norm=None, pre_permute=False):
        super().__init__()
        self.pre_norm = pre_norm(in_channels) if pre_norm else nn.Identity()
        self.pre_permute = pre_permute
        self.conv = nn.Conv2D(in_channels, out_channels, kernel_size=kernel_size,
                              stride=stride, padding=padding)
        self.post_norm = post_norm(out_channels) if post_norm else nn.Identity()    def forward(self, x):
        x = self.pre_norm(x)        if self.pre_permute:            # if take [B, H, W, C] as input, permute it to [B, C, H, W]
            x = x.transpose([0, 3, 1, 2])
        x = self.conv(x)
        x = x.transpose([0, 2, 3, 1])  # [B, C, H, W] -> [B, H, W, C]
        x = self.post_norm(x)        return x
   
In [10]
class Scale(nn.Layer):
    """
    Scale vector by element multiplications.
    """

    def __init__(self, dim, init_value=1.0):
        super().__init__()
        self.scale = self.create_parameter(shape=[dim], default_initializer=nn.initializer.Constant(init_value))    def forward(self, x):
        return x * self.scale
   
In [11]
class SquaredReLU(nn.Layer):
    """
        Squared ReLU: https://arxiv.org/abs/2109.08668
    """

    def __init__(self):
        super().__init__()
        self.relu = nn.ReLU()    def forward(self, x):
        return paddle.square(self.relu(x))
   
In [12]
class StarReLU(nn.Layer):
    """
    StarReLU: s * relu(x) ** 2 + b
    """

    def __init__(self, scale_value=1.0, bias_value=0.0):
        super().__init__()
        self.relu = nn.ReLU()
        self.scale = self.create_parameter(shape=[1], default_initializer=nn.initializer.Constant(scale_value))
        self.bias = self.create_parameter(shape=[1], default_initializer=nn.initializer.Constant(bias_value))    def forward(self, x):
        return self.scale * self.relu(x) ** 2 + self.bias
   
In [13]
def to_2tuple(x):
    if isinstance(x, (int, float)):
        x = [x, x]    return xclass Mlp(nn.Layer):
    """ MLP as used in MetaFormer models, eg Transformer, MLP-Mixer, PoolFormer, MetaFormer baslines and related networks.
    Mostly copied from timm.
    """

    def __init__(self, dim, mlp_ratio=4, out_features=None, act_layer=StarReLU, drop=0.,
                 bias=False, **kwargs):
        super().__init__()
        in_features = dim
        out_features = out_features or in_features
        hidden_features = int(mlp_ratio * in_features)
        drop_probs = to_2tuple(drop)

        self.fc1 = nn.Linear(in_features, hidden_features, bias_attr=bias)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features, bias_attr=bias)
        self.drop2 = nn.Dropout(drop_probs[1])    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)        return x
   
In [14]
class LayerNormGeneral(nn.Layer):
    r""" General LayerNorm for different situations.
    Args:
        affine_shape (int, list or tuple): The shape of affine weight and bias.
            Usually the affine_shape=C, but in some implementation, like torch.nn.LayerNorm,
            the affine_shape is the same as normalized_dim by default.
            To adapt to different situations, we offer this argument here.
        normalized_dim (tuple or list): Which dims to compute mean and variance.
        scale (bool): Flag indicates whether to use scale or not.
        bias (bool): Flag indicates whether to use scale or not.
        We give several examples to show how to specify the arguments.
        LayerNorm (https://arxiv.org/abs/1607.06450):
            For input shape of (B, *, C) like (B, N, C) or (B, H, W, C),
                affine_shape=C, normalized_dim=(-1, ), scale=True, bias=True;
            For input shape of (B, C, H, W),
                affine_shape=(C, 1, 1), normalized_dim=(1, ), scale=True, bias=True.
        Modified LayerNorm (https://arxiv.org/abs/2111.11418)
            that is idental to partial(torch.nn.GroupNorm, num_groups=1):
            For input shape of (B, N, C),
                affine_shape=C, normalized_dim=(1, 2), scale=True, bias=True;
            For input shape of (B, H, W, C),
                affine_shape=C, normalized_dim=(1, 2, 3), scale=True, bias=True;
            For input shape of (B, C, H, W),
                affine_shape=(C, 1, 1), normalized_dim=(1, 2, 3), scale=True, bias=True.
        For the several metaformer baslines,
            IdentityFormer, RandFormer and PoolFormerV2 utilize Modified LayerNorm without bias (bias=False);
            ConvFormer and CAFormer utilizes LayerNorm without bias (bias=False).
    """

    def __init__(self, affine_shape=None, normalized_dim=(-1,), scale=True,
                 bias=True, eps=1e-5):
        super().__init__()
        self.normalized_dim = normalized_dim
        self.use_scale = scale
        self.use_bias = bias        if isinstance(affine_shape, int):
            affine_shape = [affine_shape]
        self.weight = self.create_parameter(shape=affine_shape, default_initializer=nn.initializer.Constant(1.0)) if scale else None
        self.bias = self.create_parameter(shape=affine_shape, default_initializer=nn.initializer.Constant(0.0)) if bias else None
        self.eps = eps    def forward(self, x):
        c = x - x.mean(self.normalized_dim, keepdim=True)
        s = c.pow(2).mean(self.normalized_dim, keepdim=True)
        x = c / paddle.sqrt(s + self.eps)        if self.use_scale:
            x = x * self.weight        if self.use_bias:
            x = x + self.bias        return x
   
In [15]
def resize_complex_weight(origin_weight, new_h, new_w):
    h, w, num_heads = origin_weight.shape[0:3]  # size, w, c, 2
    origin_weight = origin_weight.reshape((1, h, w, num_heads * 2)).transpose([0, 3, 1, 2])
    new_weight = F.interpolate(
        origin_weight,
        size=(new_h, new_w),
        mode='bicubic',
        align_corners=True
    ).transpose([0, 2, 3, 1]).reshape((new_h, new_w, num_heads, 2))    return new_weight
   
In [16]
class DynamicFilter(nn.Layer):
    def __init__(self, dim, expansion_ratio=2, reweight_expansion_ratio=.25,
                 act1_layer=StarReLU, act2_layer=nn.Identity,
                 bias=False, num_filters=4, size=14, weight_resize=False,
                 **kwargs):
        super().__init__()
        size = to_2tuple(size)
        self.size = size[0]
        self.filter_size = size[1] // 2 + 1
        self.num_filters = num_filters
        self.dim = dim
        self.med_channels = int(expansion_ratio * dim)
        self.weight_resize = weight_resize
        self.pwconv1 = nn.Linear(dim, self.med_channels, bias_attr=bias)
        self.act1 = act1_layer()
        self.reweight = Mlp(dim, reweight_expansion_ratio, num_filters * self.med_channels)
        self.complex_weights = self.create_parameter(shape=(self.size, self.filter_size, num_filters, 2), default_initializer=nn.initializer.TruncatedNormal(std=.02))
        self.act2 = act2_layer()
        self.pwconv2 = nn.Linear(self.med_channels, dim, bias_attr=bias)    def forward(self, x):
        B, H, W, _ = x.shape

        routeing = self.reweight(x.mean(axis=(1, 2))).reshape((B, self.num_filters, -1))
        routeing = F.softmax(routeing, axis=1)
        x = self.pwconv1(x)
        x = self.act1(x)
        x = paddle.fft.rfft2(x, axes=(1, 2), norm='ortho')        if self.weight_resize:
            complex_weights = resize_complex_weight(self.complex_weights, x.shape[1], x.shape[2])        else:
            complex_weights = self.complex_weights

        weight = paddle.einsum('bfc,hwfl->bhwcl', routeing, complex_weights)

        weight = paddle.as_complex(weight)        if self.weight_resize:
            weight = weight.reshape((-1, x.shape[1], x.shape[2], self.med_channels))        else:
            weight = weight.reshape((-1, self.size, self.filter_size, self.med_channels))
        x = x * weight
        x = paddle.fft.irfft2(x, s=(H, W), axes=(1, 2), norm='ortho')

        x = self.act2(x)
        x = self.pwconv2(x)        return x
   
In [17]
model = DynamicFilter(64, weight_resize=True)
paddle.summary(model, (1, 7, 7, 64))
       
W0620 00:36:11.961606   396 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2
W0620 00:36:11.971352   396 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.
       
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #    
===========================================================================
   Linear-2          [[1, 64]]             [1, 16]             1,024     
    ReLU-6           [[1, 16]]             [1, 16]               0       
  StarReLU-2         [[1, 16]]             [1, 16]               2       
   Dropout-1         [[1, 16]]             [1, 16]               0       
   Linear-3          [[1, 16]]             [1, 512]            8,192     
   Dropout-2         [[1, 512]]            [1, 512]              0       
     Mlp-1           [[1, 64]]             [1, 512]              0       
   Linear-1       [[1, 7, 7, 64]]       [1, 7, 7, 128]         8,192     
    ReLU-5        [[1, 7, 7, 128]]      [1, 7, 7, 128]           0       
  StarReLU-1      [[1, 7, 7, 128]]      [1, 7, 7, 128]           2       
  Identity-1      [[1, 7, 7, 128]]      [1, 7, 7, 128]           0       
   Linear-4       [[1, 7, 7, 128]]      [1, 7, 7, 64]          8,192     
===========================================================================
Total params: 25,604
Trainable params: 25,604
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.23
Params size (MB): 0.10
Estimated Total Size (MB): 0.34
---------------------------------------------------------------------------
       
{'total_params': 25604, 'trainable_params': 25604}
               
In [18]
class MlpHead(nn.Layer):
    """ MLP classification head
    """

    def __init__(self, dim, num_classes=1000, mlp_ratio=4, act_layer=SquaredReLU,
                 norm_layer=nn.LayerNorm, head_dropout=0., bias=True):
        super().__init__()
        hidden_features = int(mlp_ratio * dim)
        self.fc1 = nn.Linear(dim, hidden_features, bias_attr=bias)
        self.act = act_layer()
        self.norm = norm_layer(hidden_features)
        self.fc2 = nn.Linear(hidden_features, num_classes, bias_attr=bias)
        self.head_dropout = nn.Dropout(head_dropout)    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.norm(x)
        x = self.head_dropout(x)
        x = self.fc2(x)        return x
   
In [19]
class MetaFormerBlock(nn.Layer):
    """
    Implementation of one MetaFormer block.
    """

    def __init__(self, dim,
                 token_mixer=nn.Identity, mlp=Mlp,
                 norm_layer=nn.LayerNorm,
                 drop=0., drop_path=0.,
                 layer_scale_init_value=None, res_scale_init_value=None,
                 size=14,                 ):
        super().__init__()

        self.norm1 = norm_layer(dim)
        self.token_mixer = token_mixer(dim=dim, drop=drop, size=size)
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.layer_scale1 = Scale(dim=dim, init_value=layer_scale_init_value) \            if layer_scale_init_value else nn.Identity()
        self.res_scale1 = Scale(dim=dim, init_value=res_scale_init_value) \            if res_scale_init_value else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = mlp(dim=dim, drop=drop)
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.layer_scale2 = Scale(dim=dim, init_value=layer_scale_init_value) \            if layer_scale_init_value else nn.Identity()
        self.res_scale2 = Scale(dim=dim, init_value=res_scale_init_value) \            if res_scale_init_value else nn.Identity()    def forward(self, x):
        x = self.res_scale1(x) + \
            self.layer_scale1(
                self.drop_path2(
                    self.token_mixer(self.norm1(x))
                )
            )
        x = self.res_scale2(x) + \
            self.layer_scale2(
                self.drop_path2(
                    self.mlp(self.norm2(x))
                )
            )        return x
   
In [20]
DOWNSAMPLE_LAYERS_FOUR_STAGES = [partial(Downsampling,
                                         kernel_size=7, stride=4, padding=2,
                                         post_norm=partial(LayerNormGeneral, bias=False,
                                                           eps=1e-6)
                                         )] + \
                                [partial(Downsampling,
                                         kernel_size=3, stride=2, padding=1,
                                         pre_norm=partial(LayerNormGeneral, bias=False,
                                                          eps=1e-6), pre_permute=True
                                         )] * 3class MetaFormer(nn.Layer):
    r""" MetaFormer
        A PyTorch impl of : `MetaFormer Baselines for Vision`  -
          https://arxiv.org/abs/2210.13452
    Args:
        in_chans (int): Number of input image channels. Default: 3.
        num_classes (int): Number of classes for classification head. Default: 1000.
        depths (list or tuple): Number of blocks at each stage. Default: [2, 2, 6, 2].
        dims (int): Feature dimension at each stage. Default: [64, 128, 320, 512].
        downsample_layers: (list or tuple): Downsampling layers before each stage.
        token_mixers (list, tuple or token_fcn): Token mixer for each stage. Default: nn.Identity.
        mlps (list, tuple or mlp_fcn): Mlp for each stage. Default: Mlp.
        norm_layers (list, tuple or norm_fcn): Norm layers for each stage. Default: partial(LayerNormGeneral, eps=1e-6, bias=False).
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_dropout (float): dropout for MLP classifier. Default: 0.
        layer_scale_init_values (list, tuple, float or None): Init value for Layer Scale. Default: None.
            None means not use the layer scale. Form: https://arxiv.org/abs/2103.17239.
        res_scale_init_values (list, tuple, float or None): Init value for Layer Scale. Default: [None, None, 1.0, 1.0].
            None means not use the layer scale. From: https://arxiv.org/abs/2110.09456.
        fork_feat (bool): whether output features of the 4 stages, for dense prediction
        output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6).
        head_fn: classification head. Default: nn.Linear.
    """

    def __init__(self, in_chans=3, num_classes=1000,
                 depths=[2, 2, 6, 2],
                 dims=[64, 128, 320, 512],
                 downsample_layers=DOWNSAMPLE_LAYERS_FOUR_STAGES,
                 token_mixers=nn.Identity,
                 mlps=Mlp,
                 norm_layers=partial(LayerNormGeneral, eps=1e-6, bias=False),
                 drop_path_rate=0.,
                 head_dropout=0.0,
                 layer_scale_init_values=None,
                 res_scale_init_values=[None, None, 1.0, 1.0],
                 output_norm=partial(nn.LayerNorm, epsilon=1e-6),
                 head_fn=nn.Linear,
                 input_size=(3, 224, 224),
                 **kwargs,                 ):
        super().__init__()

        self.num_classes = num_classes        if not isinstance(depths, (list, tuple)):
            depths = [depths]  # it means the model has only one stage
        if not isinstance(dims, (list, tuple)):
            dims = [dims]

        num_stage = len(depths)
        self.num_stage = num_stage        if not isinstance(downsample_layers, (list, tuple)):
            downsample_layers = [downsample_layers] * num_stage
        down_dims = [in_chans] + dims
        self.downsample_layers = nn.LayerList(
            [downsample_layers[i](down_dims[i], down_dims[i + 1]) for i in
             range(num_stage)]
        )        if not isinstance(token_mixers, (list, tuple)):
            token_mixers = [token_mixers] * num_stage        if not isinstance(mlps, (list, tuple)):
            mlps = [mlps] * num_stage        if not isinstance(norm_layers, (list, tuple)):
            norm_layers = [norm_layers] * num_stage

        dp_rates = [x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths))]        if not isinstance(layer_scale_init_values, (list, tuple)):
            layer_scale_init_values = [layer_scale_init_values] * num_stage        if not isinstance(res_scale_init_values, (list, tuple)):
            res_scale_init_values = [res_scale_init_values] * num_stage

        self.stages = nn.LayerList()  # each stage consists of multiple metaformer blocks
        cur = 0
        for i in range(num_stage):
            stage = nn.Sequential(
                *[MetaFormerBlock(dim=dims[i],
                                  token_mixer=token_mixers[i],
                                  mlp=mlps[i],
                                  norm_layer=norm_layers[i],
                                  drop_path=dp_rates[cur + j],
                                  layer_scale_init_value=layer_scale_init_values[i],
                                  res_scale_init_value=res_scale_init_values[i],
                                  size=(input_size[1] // (2 ** (i + 2)),
                                        input_size[2] // (2 ** (i + 2))),
                                  ) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]


        self.norm = output_norm(dims[-1])        if head_dropout > 0.0:
            self.head = head_fn(dims[-1], num_classes, head_dropout=head_dropout)        else:
            self.head = head_fn(dims[-1], num_classes)

        self.apply(self._init_weights)    def _init_weights(self, m):
        tn = nn.initializer.TruncatedNormal(std=.02)
        zero = nn.initializer.Constant(0.0)        if isinstance(m, (nn.Conv2D, nn.Linear)):
            tn(m.weight)            if m.bias is not None:
                zero(m.bias)    def forward_features(self, x):
        outs = []        for i in range(self.num_stage):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)        return self.norm(x.mean([1, 2]))  # (B, H, W, C) -> (B, C)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)        return x
   
In [21]
def dfformer_s18(pretrained=False, **kwargs):
    model = MetaFormer(
        depths=[3, 3, 9, 3],
        dims=[64, 128, 320, 512],
        token_mixers=DynamicFilter,
        head_fn=MlpHead,
        input_size=(3, 224, 224),
        **kwargs)    return modeldef dfformer_s36(pretrained=False, **kwargs):
    model = MetaFormer(
        depths=[3, 12, 18, 3],
        dims=[64, 128, 320, 512],
        token_mixers=DynamicFilter,
        head_fn=MlpHead,
        input_size=(3, 224, 224),
        **kwargs)    return modeldef dfformer_m36(pretrained=False, **kwargs):
    model = MetaFormer(
        depths=[3, 12, 18, 3],
        dims=[96, 192, 384, 576],
        token_mixers=DynamicFilter,
        head_fn=MlpHead,
        input_size=(3, 224, 224),
        **kwargs)    return modeldef dfformer_b36(pretrained=False, **kwargs):
    model = MetaFormer(
        depths=[3, 12, 18, 3],
        dims=[128, 256, 512, 768],
        token_mixers=DynamicFilter,
        head_fn=MlpHead,
        input_size=(3, 224, 224),
        **kwargs)    return model
   

2.3.4 模型的参数

In [ ]
model = dfformer_s18(num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
   

【AAAI 2024】DFFormer:基于快速傅里叶变换的视觉动态令牌混合器 - php中文网        

In [ ]
model = dfformer_s36(num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
   

【AAAI 2024】DFFormer:基于快速傅里叶变换的视觉动态令牌混合器 - php中文网        

In [ ]
model = dfformer_m36(num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
   

【AAAI 2024】DFFormer:基于快速傅里叶变换的视觉动态令牌混合器 - php中文网        

In [ ]
model = dfformer_b36(num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
   

【AAAI 2024】DFFormer:基于快速傅里叶变换的视觉动态令牌混合器 - php中文网        

2.4 训练

In [26]
learning_rate = 0.0001n_epochs = 100paddle.seed(42)
np.random.seed(42)
   
In [ ]
work_path = 'work/model'# DFFormer-S18model = dfformer_s18(num_classes=10)

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=learning_rate, T_max=50000 // batch_size * n_epochs, verbose=False)
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)

gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = accuracy_manager.compute(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        scheduler.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = val_accuracy_manager.compute(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))
   

【AAAI 2024】DFFormer:基于快速傅里叶变换的视觉动态令牌混合器 - php中文网        

2.5 结果分析

In [28]
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
    ''' Plot learning curve of your CNN '''
    maxtrain = max(map(float, record['train'][title]))
    maxval = max(map(float, record['val'][title]))
    ymax = max(maxtrain, maxval) * 1.1
    mintrain = min(map(float, record['train'][title]))
    minval = min(map(float, record['val'][title]))
    ymin = min(mintrain, minval) * 0.9

    total_steps = len(record['train'][title])
    x_1 = list(map(int, record['train']['iter']))
    x_2 = list(map(int, record['val']['iter']))
    figure(figsize=(10, 6))
    plt.plot(x_1, record['train'][title], c='tab:red', label='train')
    plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
    plt.ylim(ymin, ymax)
    plt.xlabel('Training steps')
    plt.ylabel(ylabel)
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()
   
In [29]
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
       
               
In [30]
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
       
               
In [31]
import time
work_path = 'work/model'model = dfformer_s18(num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
       
Throughout:458
       
In [32]
def get_cifar10_labels(labels):
    """返回CIFAR10数据集的文本标签。"""
    text_labels = [        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',        'horse', 'ship', 'truck']    return [text_labels[int(i)] for i in labels]
   
In [33]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()    for i, (ax, img) in enumerate(zip(axes, imgs)):        if paddle.is_tensor(img):
            ax.imshow(img.numpy())        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)        if pred or gt:
            ax.set_title("pt: " + pred[i] + "\ngt: " + gt[i])    return axes
   
In [34]
work_path = 'work/model'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = dfformer_s18(num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 224, 224, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
       
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
       
               

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
拼多多赚钱的5种方法 拼多多赚钱的5种方法
拼多多赚钱的5种方法 拼多多赚钱的5种方法

在拼多多上赚钱主要可以通过无货源模式一件代发、精细化运营特色店铺、参与官方高流量活动、利用拼团机制社交裂变,以及成为多多进宝推广员这5种方法实现。核心策略在于通过低成本、高效率的供应链管理与营销,利用平台社交电商红利实现盈利。

8

2026.01.26

edge浏览器怎样设置主页 edge浏览器自定义设置教程
edge浏览器怎样设置主页 edge浏览器自定义设置教程

在Edge浏览器中设置主页,请依次点击右上角“...”图标 > 设置 > 开始、主页和新建标签页。在“Microsoft Edge 启动时”选择“打开以下页面”,点击“添加新页面”并输入网址。若要使用主页按钮,需在“外观”设置中开启“显示主页按钮”并设定网址。

6

2026.01.26

苹果官方查询网站 苹果手机正品激活查询入口
苹果官方查询网站 苹果手机正品激活查询入口

苹果官方查询网站主要通过 checkcoverage.apple.com/cn/zh/ 进行,可用于查询序列号(SN)对应的保修状态、激活日期及技术支持服务。此外,查找丢失设备请使用 iCloud.com/find,购买信息与物流可访问 Apple (中国大陆) 订单状态页面。

16

2026.01.26

npd人格什么意思 npd人格有什么特征
npd人格什么意思 npd人格有什么特征

NPD(Narcissistic Personality Disorder)即自恋型人格障碍,是一种心理健康问题,特点是极度夸大自我重要性、需要过度赞美与关注,同时极度缺乏共情能力,背后常掩藏着低自尊和不安全感,影响人际关系、工作和生活,通常在青少年时期开始显现,需由专业人士诊断。

3

2026.01.26

windows安全中心怎么关闭 windows安全中心怎么执行操作
windows安全中心怎么关闭 windows安全中心怎么执行操作

关闭Windows安全中心(Windows Defender)可通过系统设置暂时关闭,或使用组策略/注册表永久关闭。最简单的方法是:进入设置 > 隐私和安全性 > Windows安全中心 > 病毒和威胁防护 > 管理设置,将实时保护等选项关闭。

5

2026.01.26

2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】
2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】

铁路12306提供起售时间查询、起售提醒、购票预填、候补购票及误购限时免费退票五项服务,并强调官方渠道唯一性与信息安全。

23

2026.01.26

个人所得税税率表2026 个人所得税率最新税率表
个人所得税税率表2026 个人所得税率最新税率表

以工资薪金所得为例,应纳税额 = 应纳税所得额 × 税率 - 速算扣除数。应纳税所得额 = 月度收入 - 5000 元 - 专项扣除 - 专项附加扣除 - 依法确定的其他扣除。假设某员工月工资 10000 元,专项扣除 1000 元,专项附加扣除 2000 元,当月应纳税所得额为 10000 - 5000 - 1000 - 2000 = 2000 元,对应税率为 3%,速算扣除数为 0,则当月应纳税额为 2000×3% = 60 元。

9

2026.01.26

oppo云服务官网登录入口 oppo云服务登录手机版
oppo云服务官网登录入口 oppo云服务登录手机版

oppo云服务https://cloud.oppo.com/可以在云端安全存储您的照片、视频、联系人、便签等重要数据。当您的手机数据意外丢失或者需要更换手机时,可以随时将这些存储在云端的数据快速恢复到手机中。

16

2026.01.26

抖币充值官方网站 抖币性价比充值链接地址
抖币充值官方网站 抖币性价比充值链接地址

网页端充值步骤:打开浏览器,输入https://www.douyin.com,登录账号;点击右上角头像,选择“钱包”;进入“充值中心”,操作和APP端一致。注意:切勿通过第三方链接、二维码充值,谨防受骗

6

2026.01.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 21.8万人学习

Django 教程
Django 教程

共28课时 | 3.5万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号