0

0

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络

P粉084495128

P粉084495128

发布时间:2025-07-25 11:09:13

|

1006人浏览过

|

来源于php中文网

原创

FasterNet聚焦于提升神经网络速度,指出仅减少FLOPs未必降低延迟,关键在于提高每秒浮点运算(FLOPS)。其提出部分卷积(PConv),减少冗余计算与内存访问。基于此构建的FasterNet在多设备上速度更快,且精度不俗,如微型版比MobileVit - XXS快数倍且精度更高,大型版准确率高且吞吐量提升。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【cvpr2023】fasternet:追逐更高flops、更快的神经网络 - php中文网

FasterNet:追逐更高FLOPS、更快的神经网络

摘要

        为了设计快速神经网络,许多工作都集中在减少浮点运算的数量(FLOPs)上。 然而,我们观察到FLOPs的减少并不一定会导致延迟的类似程度的减少。 这主要源于低效率的每秒浮点运算(FLOPS)。 为了实现更快的网络,我们回顾了流行的操作,并证明如此低的FLOPS主要是由于操作频繁的内存访问,特别是深度卷积。 因此,我们提出了一种新的部分卷积(PConv),通过同时减少冗余计算和内存访问,可以更有效地提取空间特征。 在Ponv的基础上,我们进一步提出了FasterNet,这是一个新的神经网络家族,它在各种设备上获得了比其他网络更高的运行速度,而不影响各种视觉任务的准确性。 例如,在ImageNet1K上,我们的微型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVit-XXS块3.1×、3.1×和2.5×,同时精度提高2.9%。 我们的大型FasterNet-L实现了令人印象深刻的83.5%的Top-1准确率,与新兴的Swin-B不相上下,同时在GPU上提高了49%的推断吞吐量,并在CPU上节省了42%的计算时间。

1. FasterNet

        本文思考了一个问题:怎样才能更快?之前的工作大多使用FLOPs来表示神经网络的快慢,但是某些操作(如DWConv)实际运行并不快,这主要是因为频繁的内存访问。本文提出了新的见解:设计一个低FLOPs高FLOPS的操作,这样可以加快网络运行速度。由此,本文作者提出了一个“T型”的卷积——PConv,主要思想是DWConv虽然FLOPs小,但是由于频繁的内存访问导致FLOPS也小。由于网络存在冗余通道,那我是不是可以设计一个网络只用一部分去做空间计算,作者就尝试了这一想法,发现效果非常好,速度快,精度高。具体的操作如图5所示:

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

        基于PConv和传统的分层Transformer,本文提出了一个新的网络架构——FasterNet,结构图如图4所示:

Humata
Humata

Humata是用于文件的ChatGPT。对你的数据提出问题,并获得由AI提供的即时答案。

下载
【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

2. 代码复现

2.1 下载并导入所需的库

In [ ]
!pip install paddlex
   
In [ ]
%matplotlib inlineimport paddleimport paddle.fluid as fluidimport numpy as npimport matplotlib.pyplot as pltfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport osimport matplotlib.pyplot as pltfrom matplotlib.pyplot import figureimport paddleximport mathimport itertools
   

2.2 创建数据集

In [3]
train_tfm = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.ColorJitter(brightness=0.2,contrast=0.2, saturation=0.2),
    transforms.RandomHorizontalFlip(0.5),
    transforms.RandomRotation(20),
    paddlex.transforms.MixupImage(),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

test_tfm = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
   
In [4]
paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm)
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))
       
train_dataset: 50000
val_dataset: 10000
       
In [5]
batch_size=256
   
In [6]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)
   

2.3 模型的创建

2.3.1 标签平滑

In [7]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()
   

2.3.2 DropPath

In [8]
def drop_path(x, drop_prob=0.0, training=False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0.0 or not training:        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor    return outputclass DropPath(nn.Layer):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
   

2.3.3 FasterNet模型的创建

In [9]
class PConv(nn.Layer):
    def __init__(self, dim, kernel_size=3, n_div=4):
        super().__init__()
        
        self.dim_conv = dim // n_div
        self.dim_untouched = dim - self.dim_conv

        self.conv = nn.Conv2D(self.dim_conv, self.dim_conv, kernel_size, padding=(kernel_size - 1) // 2, bias_attr=False)    def forward(self, x):
        
        x1, x2 = paddle.split(x, [self.dim_conv, self.dim_untouched], axis=1)
        x1 = self.conv(x1)
        x = paddle.concat([x1, x2], axis=1)        return x
   
In [10]
class FasterNetBlock(nn.Layer):
    def __init__(self, dim, expand_ratio=2, act_layer=nn.ReLU, drop_path_rate=0.0):
        super().__init__()

        self.pconv = PConv(dim)

        self.conv1 = nn.Conv2D(dim, dim * expand_ratio, 1, bias_attr=False)

        self.bn = nn.BatchNorm2D(dim * expand_ratio)
        self.act_layer = act_layer()

        self.conv2 = nn.Conv2D(dim * expand_ratio, dim, 1, bias_attr=False)

        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()    def forward(self, x):
        residual = x

        x = self.pconv(x)
        x = self.conv1(x)
        x = self.bn(x)
        x = self.act_layer(x)
        x = self.conv2(x)

        x = residual + self.drop_path(x)        return x
   
In [11]
class FasterNet(nn.Layer):
    def __init__(self, in_channel=3, embed_dim=40, act_layer=nn.ReLU, num_classes=1000, depths=[1, 2, 8, 2], drop_path=0.0):
        super().__init__()

        self.stem = nn.Sequential(
            nn.Conv2D(in_channel, embed_dim, 4, stride=4, bias_attr=False),
            nn.BatchNorm2D(embed_dim),
            act_layer()
        )

        drop_path_list = [x.item() for x in paddle.linspace(0, drop_path, sum(depths))]

        self.feature = []
        embed_dim = embed_dim        for idx, depth in enumerate(depths):
            
            self.feature.append(nn.Sequential(
                *[FasterNetBlock(embed_dim, act_layer=act_layer, drop_path_rate=drop_path_list[sum(depths[:idx]) + i]) for i in range(depth)]
            ))            if idx < len(depths) - 1:
                self.feature.append(nn.Sequential(
                    nn.Conv2D(embed_dim, embed_dim * 2, 2, stride=2, bias_attr=False),
                    nn.BatchNorm2D(embed_dim * 2),
                    act_layer()
                ))

                embed_dim = embed_dim * 2
        
        self.feature = nn.Sequential(*self.feature)

        self.avg_pool = nn.AdaptiveAvgPool2D(1)
        
        self.conv1 = nn.Conv2D(embed_dim, 1280, 1, bias_attr=False)
        self.act_layer = act_layer()
        self.fc = nn.Linear(1280, num_classes)    def forward(self, x):
        x = self.stem(x)
        x = self.feature(x)
        
        x = self.avg_pool(x)
        x = self.conv1(x)
        x = self.act_layer(x)
        x = self.fc(x.flatten(1))        return x
   
In [12]
def fasternet_t0():
    num_classes=10
    embed_dim = 40
    depths = [1, 2, 8, 2]
    drop_path_rate = 0.0
    act_layer = nn.GELU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_t1():
    num_classes=10
    embed_dim = 64
    depths = [1, 2, 8, 2]
    drop_path_rate = 0.02
    act_layer = nn.GELU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_t2():
    num_classes=10
    embed_dim = 96
    depths = [1, 2, 8, 2]
    drop_path_rate = 0.05
    act_layer = nn.ReLU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_s():
    num_classes=10
    embed_dim = 128
    depths = [1, 2, 13, 2]
    drop_path_rate = 0.03
    act_layer = nn.ReLU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_m():
    num_classes=10
    embed_dim = 144
    depths = [3, 4, 18, 3]
    drop_path_rate = 0.05
    act_layer = nn.ReLU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_l():
    num_classes=10
    embed_dim = 192
    depths = [3, 4, 18, 3]
    drop_path_rate = 0.05
    act_layer = nn.ReLU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)
   

2.3.4 模型的参数

In [ ]
model = fasternet_t0()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_t1()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_t2()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_s()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_m()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_l()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

2.4 训练

In [19]
learning_rate = 0.001n_epochs = 100paddle.seed(42)
np.random.seed(42)
   
In [ ]
work_path = 'work/model'# FasterNet-T0model = fasternet_t0()

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=learning_rate, T_max=50000 // batch_size * n_epochs, verbose=False)
optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=scheduler, weight_decay=0.005)

gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = paddle.metric.accuracy(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        scheduler.step()
        optimizer.clear_grad()
        
        train_loss += loss
        train_num += len(y_data)

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = paddle.metric.accuracy(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    
    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

2.5 结果分析

In [21]
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
    ''' Plot learning curve of your CNN '''
    maxtrain = max(map(float, record['train'][title]))
    maxval = max(map(float, record['val'][title]))
    ymax = max(maxtrain, maxval) * 1.1
    mintrain = min(map(float, record['train'][title]))
    minval = min(map(float, record['val'][title]))
    ymin = min(mintrain, minval) * 0.9

    total_steps = len(record['train'][title])
    x_1 = list(map(int, record['train']['iter']))
    x_2 = list(map(int, record['val']['iter']))
    figure(figsize=(10, 6))
    plt.plot(x_1, record['train'][title], c='tab:red', label='train')
    plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
    plt.ylim(ymin, ymax)
    plt.xlabel('Training steps')
    plt.ylabel(ylabel)
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()
   
In [22]
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
       
               
In [23]
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
       
               
In [24]
import time
work_path = 'work/model'model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
       
Throughout:982
       
In [25]
def get_cifar10_labels(labels):  
    """返回CIFAR10数据集的文本标签。"""
    text_labels = [        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',        'horse', 'ship', 'truck']    return [text_labels[int(i)] for i in labels]
   
In [26]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):  
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()    for i, (ax, img) in enumerate(zip(axes, imgs)):        if paddle.is_tensor(img):
            ax.imshow(img.numpy())        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)        if pred or gt:
            ax.set_title("pt: " + pred[i] + "\ngt: " + gt[i])    return axes
   
In [27]
work_path = 'work/model'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 224, 224, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
       
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
       
               
In [ ]
!pip install interpretdl
   
In [29]
import interpretdl as it
   
In [30]
work_path = 'work/model'model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
   
In [31]
X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
lime = it.LIMECVInterpreter(model)
   
In [32]
lime_weights = lime.interpret(X.numpy()[3], interpret_class=y.numpy()[3], batch_size=100, num_samples=10000, visual=True)
       
100%|██████████| 10000/10000 [00:46<00:00, 212.97it/s]
       
               

3. 对比实验

Model Val Acc Speed
FasterNet 92.8% 982
- PConv +DWConv 93.2% 580

对比实验见DWConv.ipynb

总结

        FasterNet从FLOPs和FLOPS两个角度重新审视卷积操作对于神经网络的影响,提出了新的神经网络家族——FasterNet。FasterNet不仅速度快,准确率也高。

相关专题

更多
c++ 根号
c++ 根号

本专题整合了c++根号相关教程,阅读专题下面的文章了解更多详细内容。

42

2026.01.23

c++空格相关教程合集
c++空格相关教程合集

本专题整合了c++空格相关教程,阅读专题下面的文章了解更多详细内容。

46

2026.01.23

yy漫画官方登录入口地址合集
yy漫画官方登录入口地址合集

本专题整合了yy漫画入口相关合集,阅读专题下面的文章了解更多详细内容。

202

2026.01.23

漫蛙最新入口地址汇总2026
漫蛙最新入口地址汇总2026

本专题整合了漫蛙最新入口地址大全,阅读专题下面的文章了解更多详细内容。

341

2026.01.23

C++ 高级模板编程与元编程
C++ 高级模板编程与元编程

本专题深入讲解 C++ 中的高级模板编程与元编程技术,涵盖模板特化、SFINAE、模板递归、类型萃取、编译时常量与计算、C++17 的折叠表达式与变长模板参数等。通过多个实际示例,帮助开发者掌握 如何利用 C++ 模板机制编写高效、可扩展的通用代码,并提升代码的灵活性与性能。

16

2026.01.23

php远程文件教程合集
php远程文件教程合集

本专题整合了php远程文件相关教程,阅读专题下面的文章了解更多详细内容。

100

2026.01.22

PHP后端开发相关内容汇总
PHP后端开发相关内容汇总

本专题整合了PHP后端开发相关内容,阅读专题下面的文章了解更多详细内容。

73

2026.01.22

php会话教程合集
php会话教程合集

本专题整合了php会话教程相关合集,阅读专题下面的文章了解更多详细内容。

75

2026.01.22

宝塔PHP8.4相关教程汇总
宝塔PHP8.4相关教程汇总

本专题整合了宝塔PHP8.4相关教程,阅读专题下面的文章了解更多详细内容。

67

2026.01.22

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 20万人学习

Django 教程
Django 教程

共28课时 | 3.5万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号