0

0

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力

P粉084495128

P粉084495128

发布时间:2025-07-16 13:26:10

|

646人浏览过

|

来源于php中文网

原创

轻量级卷积神经网络因计算预算限制深度和宽度,导致表示能力与性能不足。为此提出动态卷积,不增加网络深度或宽度,每层用多个并行卷积核,依输入注意力动态聚合。这既因核小高效,又因非线性聚合增强表示能力。将其用于MobileNetv3 - Small,ImageNet分类TOP - 1精度提2.9%,仅增4%Flops,COCO关键点检测提2.9AP。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【cvpr 2020】dynamic convolution:在卷积核上的注意力 - php中文网

Dynamic Convolution:在卷积核上的注意力

摘要

        轻量级卷积神经网络(CNNs)由于其较低的计算预算限制了CNNs的深度(卷积层数)和宽度(通道数),导致其表示能力有限,从而导致性能下降。 为了解决这个问题,我们提出了动态卷积,一种在不增加网络深度或宽度的情况下增加模型复杂性的新设计。 动态卷积不是每层使用一个卷积核,而是根据依赖于输入的注意力动态聚合多个并行的卷积核。 集合多个核不仅由于卷积核小而计算效率高,而且由于这些核通过注意力以非线性方式聚合而具有更强的表示能力。 通过对最先进的体系结构MobileNetv3-Small简单地使用动态卷积,ImageNet分类的TOP-1精度提高了2.9%,仅增加了4%的Flops,COCO关键点检测的增益达到了2.9AP。

1. Dynamic Convolution

        常规卷积对所有实例使用同样的卷积核,这会损害模型对实例的表示能力。为此,如图3所示,本文提出了Dynamic Convolution。与CondConv思想一样:首先创建一个可学习的卷积核库,然后使用路由函数预测每一卷积核的权重,从而得到针对该实例的专门卷积核。具体实现有两点不同:

  1. CondConv仅使用一个简单的全连接层和Sigmoid函数生成权重(这会削弱表达能力),因此本文采用类似SE Layer的操作,激活函数使用Softmax函数(如图4所示,可以约束解空间)。
  2. 在早期Dynamic Convolution使用几乎均匀的注意力以保证在早期,卷积核库中的卷积核可以有效地更新。这个通过设置Softmax函数的温度参数来实现,早期阶段使用较大的温度,然后进行线性衰减到1。

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网 【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

2. 代码复现

2.1 下载并导入所需要的包

In [1]
%matplotlib inlineimport paddleimport numpy as npimport matplotlib.pyplot as pltfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport osimport matplotlib.pyplot as pltfrom matplotlib.pyplot import figurefrom paddle import ParamAttrfrom paddle.nn.layer.norm import _BatchNormBaseimport math

2.2 创建数据集

In [2]
train_tfm = transforms.Compose([
    transforms.Resize((130, 130)),
    transforms.RandomResizedCrop(128),
    transforms.RandomHorizontalFlip(0.5),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])

test_tfm = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])
In [3]
paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm, )
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))
train_dataset: 50000
val_dataset: 10000
In [4]
batch_size=512
In [5]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)

2.3 标签平滑

In [6]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()

2.4 AlexNet-DY

2.4.1 Dynamic Convolution

In [7]
class RoutingAttention(nn.Layer):
    def __init__(self, inplanes, num_experts, ratio=4, temperature=30, end_epoches=10):
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2D(1)
        self.net = nn.Sequential(
            nn.Conv2D(inplanes, int(inplanes//ratio), 1),
            nn.ReLU(),
            nn.Conv2D(int(inplanes//ratio), num_experts, 1)
        )
        self.temperature = temperature
        self.step = self.temperature // end_epoches    def update_temperature(self):
        if self.temperature > 1:
            self.temperature -=self.step            if self.temperature < 1:
                self.temperature = 1
        return self.temperature    def set_temperature(self, temperature=1):
        self.temperature = temperature        return self.temperature    def forward(self, x):
        attn=self.avgpool(x)
        attn=self.net(attn).reshape((attn.shape[0], -1))        return F.softmax(attn / self.temperature)
In [8]
class DYConv2D(nn.Layer):
    def __init__(self, inplanes, outplanes, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias_attr=True, num_experts=4):
        super().__init__()
        self.inplanes=inplanes
        self.outplanes=outplanes
        self.kernel_size=kernel_size
        self.stride=stride
        self.padding=padding
        self.dilation=dilation
        self.groups=groups
        self.bias=bias_attr
        self.num_experts=num_experts
        self.routing=RoutingAttention(inplanes=inplanes, num_experts=num_experts)
        self.weight=self.create_parameter((num_experts, outplanes, inplanes // groups, kernel_size, kernel_size),
            default_initializer=nn.initializer.KaimingNormal()) # num_experts, out, in//g, k, k
        if(bias_attr):
            self.bias=self.create_parameter((num_experts, outplanes), default_initializer=nn.initializer.KaimingNormal())        else:
            self.bias=None

    def forward(self, x):
        b, c, h, w = x.shape
        attn = self.routing(x) # b, num_experts
        x = x.reshape((1, -1, h, w))    #由于DY CNN对每一个样本都有不同的权重,因此为了使用F.conv2d,将batch维放入特征C中
        weight = paddle.mm(attn, self.weight.reshape((self.num_experts, -1))).reshape(
            (-1, self.inplanes//self.groups, self.kernel_size, self.kernel_size))  # b*out, in//g, k, k
        if(self.bias is not None):
            bias=paddle.mm(attn, self.bias.reshape((self.num_experts, -1))).reshape([-1])
            output=F.conv2d(x, weight=weight, bias=bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * b)        else:
            bias=None
            output=F.conv2d(x, weight=weight, bias=bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * b)

        output=output.reshape((b, self.outplanes, output.shape[-2], output.shape[-1]))        return output
In [10]
model = DYConv2D(64, 128, 3, padding=1, stride=2, num_experts=4)
paddle.summary(model, (4, 64, 224, 224))
W0131 21:58:42.897727   396 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2
W0131 21:58:42.901930   396 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.
-------------------------------------------------------------------------------
   Layer (type)         Input Shape          Output Shape         Param #    
===============================================================================
AdaptiveAvgPool2D-1 [[4, 64, 224, 224]]     [4, 64, 1, 1]            0       
     Conv2D-1         [[4, 64, 1, 1]]       [4, 16, 1, 1]          1,040     
      ReLU-5          [[4, 16, 1, 1]]       [4, 16, 1, 1]            0       
     Conv2D-2         [[4, 16, 1, 1]]        [4, 4, 1, 1]           68       
RoutingAttention-1  [[4, 64, 224, 224]]         [4, 4]               0       
===============================================================================
Total params: 1,108
Trainable params: 1,108
Non-trainable params: 0
-------------------------------------------------------------------------------
Input size (MB): 49.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 49.01
-------------------------------------------------------------------------------
{'total_params': 1108, 'trainable_params': 1108}

2.4.2 AlexNet-DY

In [9]
class AlexNet_DY(nn.Layer):
    def __init__(self,num_classes=10):
        super().__init__()
        self.features=nn.Sequential(
            nn.Conv2D(3, 48, kernel_size=11, stride=4, padding=11//2),
            nn.BatchNorm(48),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3, stride=2),
            nn.Conv2D(48, 128, kernel_size=5, padding=2),
            nn.BatchNorm(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3, stride=2),
            DYConv2D(128, 192, kernel_size=3, stride=1, padding=1, num_experts=2),
            nn.BatchNorm(192),
            nn.ReLU(),
            DYConv2D(192, 192, kernel_size=3, stride=1, padding=1, num_experts=2),
            nn.BatchNorm(192),
            nn.ReLU(),
            DYConv2D(192, 128, kernel_size=3, stride=1, padding=1, num_experts=2),
            nn.BatchNorm(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3, stride=2),
        )
        self.classifier=nn.Sequential(
            nn.Linear(3 * 3 * 128, 2048),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(2048, num_classes),
        )    def forward(self,x):
        x = self.features(x)
        x = paddle.flatten(x, 1)
        x=self.classifier(x)        return x
In [ ]
model = AlexNet_DY(num_classes=10)
paddle.summary(model, (4, 3, 128, 128))

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

BGremover
BGremover

VanceAI推出的图片背景移除工具

下载

2.5 训练

In [10]
learning_rate = 0.1n_epochs = 100paddle.seed(42)
np.random.seed(42)
In [11]
def init_weight(m):
        zeros = nn.initializer.Constant(0)
        ones = nn.initializer.Constant(1)        if isinstance(m, (nn.Conv2D, nn.Linear)):
            nn.initializer.KaimingNormal(m.weight)        if isinstance(m, nn.BatchNorm2D):
            zeros(m.bias)
            ones(m.weight)
In [ ]
work_path = 'work/model'model = AlexNet_DY(num_classes=10)
model.apply(init_weight)

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=learning_rate, milestones=[30, 60, 90], verbose=False)
optimizer = paddle.optimizer.SGD(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)


gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = accuracy_manager.compute(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)
    scheduler.step()

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = val_accuracy_manager.compute(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))    for i in model.features.children():        if isinstance(i, DYConv2D):
            i.routing.update_temperature()print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

2.6 实验结果

In [16]
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
    ''' Plot learning curve of your CNN '''
    maxtrain = max(map(float, record['train'][title]))
    maxval = max(map(float, record['val'][title]))
    ymax = max(maxtrain, maxval) * 1.1
    mintrain = min(map(float, record['train'][title]))
    minval = min(map(float, record['val'][title]))
    ymin = min(mintrain, minval) * 0.9

    total_steps = len(record['train'][title])
    x_1 = list(map(int, record['train']['iter']))
    x_2 = list(map(int, record['val']['iter']))
    figure(figsize=(10, 6))
    plt.plot(x_1, record['train'][title], c='tab:red', label='train')
    plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
    plt.ylim(ymin, ymax)
    plt.xlabel('Training steps')
    plt.ylabel(ylabel)
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()
In [17]
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
In [18]
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
In [19]
import time
work_path = 'work/model'model = AlexNet_DY(num_classes=10)for i in model.features.children():        if isinstance(i, CondConv2D):
            i.routing.set_temperature()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
Throughout:1764
In [20]
def get_cifar10_labels(labels):
    """返回CIFAR10数据集的文本标签。"""
    text_labels = [        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',        'horse', 'ship', 'truck']    return [text_labels[int(i)] for i in labels]
In [21]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()    for i, (ax, img) in enumerate(zip(axes, imgs)):        if paddle.is_tensor(img):
            ax.imshow(img.numpy())        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        ax.set_title("pt: " + str(pred[i]) + "\ngt: " + str(gt[i]))    return axes
In [22]
work_path = 'work/model'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = AlexNet_DY(num_classes=10)for i in model.features.children():        if isinstance(i, CondConv2D):
            i.routing.set_temperature()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 128, 128, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

3. AlexNet

3.1 AlexNet

In [23]
class AlexNet(nn.Layer):
    def __init__(self,num_classes=10):
        super().__init__()
        self.features=nn.Sequential(
            nn.Conv2D(3,48, kernel_size=11, stride=4, padding=11//2),
            nn.BatchNorm2D(48),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3,stride=2),
            nn.Conv2D(48, 128, kernel_size=5, padding=2),
            nn.BatchNorm2D(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3,stride=2),
            nn.Conv2D(128, 192, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(192),
            nn.ReLU(),
            nn.Conv2D(192, 192, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(192),
            nn.ReLU(),
            nn.Conv2D(192, 128,kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3, stride=2),
        )
        self.classifier=nn.Sequential(
            nn.Linear(3 * 3 * 128, 2048),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(2048, num_classes),
        )    def forward(self,x):
        x = self.features(x)
        x = paddle.flatten(x, 1)
        x=self.classifier(x)        return x
In [ ]
model = AlexNet(num_classes=10)
paddle.summary(model, (1, 3, 128, 128))

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

3.2 训练

In [25]
learning_rate = 0.1n_epochs = 100paddle.seed(42)
np.random.seed(42)
In [ ]
work_path = 'work/model1'model = AlexNet(num_classes=10)
model.apply(init_weight)

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=learning_rate, milestones=[30, 60, 90], verbose=False)
optimizer = paddle.optimizer.SGD(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)


gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record1 = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record1 = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = accuracy_manager.compute(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record1['train']['loss'].append(loss.numpy())
            loss_record1['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)
    scheduler.step()

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record1['train']['acc'].append(train_acc)
    acc_record1['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = val_accuracy_manager.compute(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record1['val']['loss'].append(total_val_loss.numpy())
    loss_record1['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record1['val']['acc'].append(val_acc)
    acc_record1['val']['iter'].append(acc_iter)    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

3.3 实验结果

In [27]
plot_learning_curve(loss_record1, title='loss', ylabel='CE Loss')
In [28]
plot_learning_curve(acc_record1, title='acc', ylabel='Accuracy')
In [29]
##### import timework_path = 'work/model1'model = AlexNet(num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
Throughout:1822
In [30]
work_path = 'work/model1'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = AlexNet(num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 128, 128, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

4. 对比实验结果

Model Train Acc Val Acc Parameter
AlexNet-DY 0.7515 0.8209 8324368
AlexNet 0.7049 0.7872 7526794

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
C++ 设计模式与软件架构
C++ 设计模式与软件架构

本专题深入讲解 C++ 中的常见设计模式与架构优化,包括单例模式、工厂模式、观察者模式、策略模式、命令模式等,结合实际案例展示如何在 C++ 项目中应用这些模式提升代码可维护性与扩展性。通过案例分析,帮助开发者掌握 如何运用设计模式构建高质量的软件架构,提升系统的灵活性与可扩展性。

14

2026.01.30

c++ 字符串格式化
c++ 字符串格式化

本专题整合了c++字符串格式化用法、输出技巧、实践等等内容,阅读专题下面的文章了解更多详细内容。

9

2026.01.30

java 字符串格式化
java 字符串格式化

本专题整合了java如何进行字符串格式化相关教程、使用解析、方法详解等等内容。阅读专题下面的文章了解更多详细教程。

12

2026.01.30

python 字符串格式化
python 字符串格式化

本专题整合了python字符串格式化教程、实践、方法、进阶等等相关内容,阅读专题下面的文章了解更多详细操作。

4

2026.01.30

java入门学习合集
java入门学习合集

本专题整合了java入门学习指南、初学者项目实战、入门到精通等等内容,阅读专题下面的文章了解更多详细学习方法。

20

2026.01.29

java配置环境变量教程合集
java配置环境变量教程合集

本专题整合了java配置环境变量设置、步骤、安装jdk、避免冲突等等相关内容,阅读专题下面的文章了解更多详细操作。

18

2026.01.29

java成品学习网站推荐大全
java成品学习网站推荐大全

本专题整合了java成品网站、在线成品网站源码、源码入口等等相关内容,阅读专题下面的文章了解更多详细推荐内容。

19

2026.01.29

Java字符串处理使用教程合集
Java字符串处理使用教程合集

本专题整合了Java字符串截取、处理、使用、实战等等教程内容,阅读专题下面的文章了解详细操作教程。

3

2026.01.29

Java空对象相关教程合集
Java空对象相关教程合集

本专题整合了Java空对象相关教程,阅读专题下面的文章了解更多详细内容。

6

2026.01.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 22.4万人学习

Django 教程
Django 教程

共28课时 | 3.7万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号