0

0

物理信息驱动的神经网络介绍

王林

王林

发布时间:2024-01-23 12:06:12

|

3150人浏览过

|

来源于网易伏羲

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于物理信息的神经网络是什么

基于物理信息的神经网络(PINN)是一种结合物理模型和神经网络的方法。通过将物理方法融入神经网络中,PINN可以学习非线性系统的动力学行为。相较于传统的基于物理模型的方法,PINN具有更高的灵活性和可扩展性。它可以自适应地学习复杂的非线性动力学系统,并同时满足物理规范的要求。本文将介绍PINN的基本原理,并提供一些实际应用示例。

动力先锋仿阿里巴巴B2B电子商务系统
动力先锋仿阿里巴巴B2B电子商务系统

前台功能介绍:1、网页首页显示有高级会员推荐,精品推荐,商业机会分类列表,最新供求信息,网站动态,推荐企业,行业动态等;2、商业机会栏目功能有:二级分类,已经带有详细分类的数据库,后台可以更改增加操作,并可以推荐公司,栏目分为分类显示信息,最新的采购、供应、合作和代理信息,搜索时同样按分类,信息,时间,交易类型等搜索;3、展厅展品栏目功能:二级分类,已经带有详细分类的数据库,后台可以更改增加操作,

下载

PINN的基础原理是将物理方法融入神经网络,以学习系统的动力学行为。具体来说,我们可以将物理方法表示为以下形式:

F(u(x),\frac{\partial u}{\partial x},x,t)=0

我们的目标是通过学习系统状态变化u(x)的时间演化以及系统周边的边界条件,来实现对系统行为的理解。为了达到这个目标,我们可以利用神经网络模拟状态变化u(x)的发展,并使用自动微分技术计算状态变化的梯度。同时,我们还可以使用物理方法来约束神经网络与状态变化之间的关系。这样,我们就能够更好地理解系统的状态演化和预测未来的变化。

具体而言,我们可以使用如下的损失函数来训练PINN:

L_{pinn}=L_{数据}+L_{物理}

其中L_{data}是数据丢失,用于模拟已经知道的状态变化值。通常,我们可以使用均方误差来确定义L_{data}:

L_{data}=\frac{1}{N}\sum_{i=1}^{N}(u_i-u_{data,i})^2

其中$N$是数据集中的样本数,u_i是神经网络预测的状态变化值,u_{data,i}是数据集中对应的真实状态变化值。

L_{physics}是物理约束损失,使用于保证神经网络和状态变化满足物理方法。通常,我们可以使用残差数来确定义L_{物理}:

L_{物理}=\frac{1}{N}\sum_{i=1}^{N}(F(u_i,\frac{\partial u_i}{\partial x},x_i,t_i))^2

其中F是物理方法,\frac{\partial u_i}{\partial x}是神经网络预测的状态变化量的坡度,x_i和t_i是类似本i的空间和时间坐标。

通过最小化L_{pinn},我们可以以同时模拟数据和满足物理方法,从而学习系统的动力学行为。

现在我们来看一些现实的PINN的演示。其中一个典型的例子是学习Navier-Stokes方法的动力学行为。Navier-Stokes方法描述了流体的运动行为,它可以写成如下的形式:

\rho(\frac{\partial u}{\partial t}+u\cdot\nabla u)=-\nabla p+\mu\nabla^2u+f

其中\rho是流体的密度,u是流体的速度,p是流体的压力,\mu是流体的密度,f是外部力。我们的目标是学习流体的速度和压力的时间演化,以及在流体边界上的边界条件。

为了实现这一目标,我们可以将Navier-Stokes方法填入神经网络中,以方便学习速度和压力的时间演化。具体而言,我们可以使用如下的损失败数来训练PINN:

L_{pinn}=L_{数据}+L_{物理}

其中L_{data}和L_{physics}的定义与前文相同。我们可以使用流体力学模型生成一组包含速度和压力的状态变量数据,然后使用PINN来模拟状态变化和满足Navier-Stokes方法。这样,我们就可以以学习流动体的动力学行为,包括湿流、涡旋和边界层等现象,而无需先确定正义复杂的物理模型或者手工推导解析。

另外一个例子是学习非线性波运动方法的运动学行为。非线性波运动方法描述了波运动在介绍中的传播行为,它可以写成如下的形式:

\frac{\partial^2u}{\partial t^2}-c^2\nabla^2u+f(u)=0

其中u是波速的幅度,c是波速,f(u)是非线性质的项目。我们的目标是学习波动态的时间演化和在介绍边界上的边界条件。

为了实现这一目标,我们可以将非线性波过程纳入神经网络中,以方便学习波运动的时代演化。具体而言,我们可以使用如下的损毁数来训练PINN:

L_{pinn}=L_{数据}+L_{物理}

其中L_{data}和L_{physics}的定义与前文相同。我们可以使用数值方法生成一组包含波幅和台阶的状态变化数据,然后用PINN来模拟状态变化量和满足非线性波动方法。这样,我们就可以学习波动在介质中的时间演化,包括波包的形状变化、折射和反射等现象,而无需先定义复杂的物理模型或手工推导解析。

总之,基于物理信息的神经网络是一种结合物理模型和神经网络的方法,它可以适应地球学习复杂的非线动力学系统,同时保持对物理规律的严格满足。PINN已被广泛应用于流体力学、声学、结构力学等领域,并取得了一些显着的结果。未来,随着神经网络和自动化微分技术的不发展,PINN将有希望成为一种更大更强更通用的工具,用于解决各种非线性动力学问题。

相关文章

驱动精灵
驱动精灵

驱动精灵基于驱动之家十余年的专业数据积累,驱动支持度高,已经为数亿用户解决了各种电脑驱动问题、系统故障,是目前有效的驱动软件,有需要的小伙伴快来保存下载体验吧!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
PHP 命令行脚本与自动化任务开发
PHP 命令行脚本与自动化任务开发

本专题系统讲解 PHP 在命令行环境(CLI)下的开发与应用,内容涵盖 PHP CLI 基础、参数解析、文件与目录操作、日志输出、异常处理,以及与 Linux 定时任务(Cron)的结合使用。通过实战示例,帮助开发者掌握使用 PHP 构建 自动化脚本、批处理工具与后台任务程序 的能力。

36

2025.12.13

c++ 根号
c++ 根号

本专题整合了c++根号相关教程,阅读专题下面的文章了解更多详细内容。

25

2026.01.23

c++空格相关教程合集
c++空格相关教程合集

本专题整合了c++空格相关教程,阅读专题下面的文章了解更多详细内容。

31

2026.01.23

yy漫画官方登录入口地址合集
yy漫画官方登录入口地址合集

本专题整合了yy漫画入口相关合集,阅读专题下面的文章了解更多详细内容。

119

2026.01.23

漫蛙最新入口地址汇总2026
漫蛙最新入口地址汇总2026

本专题整合了漫蛙最新入口地址大全,阅读专题下面的文章了解更多详细内容。

180

2026.01.23

C++ 高级模板编程与元编程
C++ 高级模板编程与元编程

本专题深入讲解 C++ 中的高级模板编程与元编程技术,涵盖模板特化、SFINAE、模板递归、类型萃取、编译时常量与计算、C++17 的折叠表达式与变长模板参数等。通过多个实际示例,帮助开发者掌握 如何利用 C++ 模板机制编写高效、可扩展的通用代码,并提升代码的灵活性与性能。

16

2026.01.23

php远程文件教程合集
php远程文件教程合集

本专题整合了php远程文件相关教程,阅读专题下面的文章了解更多详细内容。

70

2026.01.22

PHP后端开发相关内容汇总
PHP后端开发相关内容汇总

本专题整合了PHP后端开发相关内容,阅读专题下面的文章了解更多详细内容。

63

2026.01.22

php会话教程合集
php会话教程合集

本专题整合了php会话教程相关合集,阅读专题下面的文章了解更多详细内容。

64

2026.01.22

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

布尔教育设计模式视频教程
布尔教育设计模式视频教程

共10课时 | 2.6万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号