0

0

JavaScript 中图的实现

王林

王林

发布时间:2023-09-13 12:49:06

|

830人浏览过

|

来源于tutorialspoint

转载

javascript 中图的实现

图是一种非线性数据结构,表示一组顶点(也称为节点)以及它们之间的关系(或边)。顶点表示实体或对象,而表示顶点之间的关系或连接。图可用于对许多不同类型的关系进行建模,例如社交网络、交通系统或信息流。

图有两种主要类型:有向图(也称为有向图)和无向图。在有向图中,边有一个方向,并且只能在一个方向上遍历,即从起始顶点到结束顶点。在无向图中,边没有方向,可以在两个方向上遍历。

JavaScript 中图的实现

图可以使用邻接矩阵或邻接列表来实现。在这里,我们将使用邻接列表在 JavaScript 中实现图形。

创建图表类

这里我们创建了图形类的蓝图。

立即学习Java免费学习笔记(深入)”;

class Graph {
   constructor() {
      this.adjacencyList = {};
   }
}

添加顶点

该函数通过在 adjacencyList 对象中创建一个新键并将空数组作为其值来向图中添加一个新顶点(或节点)。新顶点将作为键,空数组将用于存储其邻居。

addVertex(vertex) {
   if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
}

添加边缘

此函数在两个顶点之间添加一条新边。它接受两个参数:vertex1 和 vertex2,并将 vertex2 添加到 vertex1 的邻居数组中,反之亦然。这会在两个顶点之间创建连接。

addEdge(vertex1, vertex2) {
   this.adjacencyList[vertex1].push(vertex2);
   this.adjacencyList[vertex2].push(vertex1);
}

打印图表

此函数将图表记录到控制台。它迭代 adjacencyList 对象中的每个顶点并记录该顶点及其邻居。

print() {
   for (const [vertex, edges] of Object.entries(this.adjacencyList)) {
      console.log(`${vertex} -> ${edges.join(", ")}`);
   }
}

示例

在下面的示例中,我们定义一个图并向该图添加顶点和边。最后打印图表。

class Graph {
   constructor() {
      this.adjacencyList = {};
   }
   addVertex(vertex) {
      if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
   }
   addEdge(vertex1, vertex2) {
      this.adjacencyList[vertex1].push(vertex2);
      this.adjacencyList[vertex2].push(vertex1);
   }
   print() {
      for (const [vertex, edges] of Object.entries(this.adjacencyList)) {
         console.log(`${vertex} -> ${edges.join(", ")}`);
      }
   }
}
const graph = new Graph();
graph.addVertex("A");
graph.addVertex("B");
graph.addVertex("C");
graph.addVertex("D");
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("B", "D");
graph.addEdge("C", "D");
console.log("Graph:");
graph.print();

输出

Graph:
A -> B, C
B -> A, D
C -> A, D
D -> B, C

删除边

此函数删除两个顶点之间的边。它接受两个参数:vertex1 和 vertex2,并从 vertex1 的邻居数组中过滤掉 vertex2,反之亦然。

设计师AI工具箱
设计师AI工具箱

最懂设计师的效率提升平台,实现高效设计出图和智能改图,室内设计,毛坯渲染,旧房改造 ,软装设计

下载
removeEdge(vertex1, vertex2) {
   this.adjacencyList[vertex1] = this.adjacencyList[vertex1].filter(
      (v) => v !== vertex2
   );
   this.adjacencyList[vertex2] = this.adjacencyList[vertex2].filter(
      (v) => v !== vertex1
   );
}

删除顶点

该函数从图中删除一个顶点。它接受一个顶点参数,并首先删除连接到该顶点的所有边。然后,它从 adjacencyList 对象中删除该键。

removeVertex(vertex) {
   while (this.adjacencyList[vertex].length) {
      const adjacentVertex = this.adjacencyList[vertex].pop();
      this.removeEdge(vertex, adjacentVertex);
   }
   delete this.adjacencyList[vertex];
}

示例

在下面的示例中,我们定义一个图并添加顶点和边,然后打印该图。我们从图中删除一条边 AC,最后打印结果图。

class Graph {
   constructor() {
      this.adjacencyList = {};
   }
   addVertex(vertex) {
      if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
   }
   addEdge(vertex1, vertex2) {
      this.adjacencyList[vertex1].push(vertex2);
      this.adjacencyList[vertex2].push(vertex1);
   }
   removeEdge(vertex1, vertex2) {
      this.adjacencyList[vertex1] = this.adjacencyList[vertex1].filter(
         (v) => v !== vertex2
      );
      this.adjacencyList[vertex2] = this.adjacencyList[vertex2].filter(
         (v) => v !== vertex1
      );
   }
   removeVertex(vertex) {
      while (this.adjacencyList[vertex].length) {
         const adjacentVertex = this.adjacencyList[vertex].pop();
         this.removeEdge(vertex, adjacentVertex);
      }
      delete this.adjacencyList[vertex];
   }
   print() {
      for (const [vertex, edges] of Object.entries(this.adjacencyList)) {
         console.log(`${vertex} -> ${edges.join(", ")}`);
      }
   }
}
const graph = new Graph();
graph.addVertex("A");
graph.addVertex("B");
graph.addVertex("C");
graph.addVertex("D");
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("B", "D");
graph.addEdge("C", "D");
console.log("Initial Graph:");
graph.print();
console.log("Graph after removal of edge AC:")
graph.removeEdge("A","C");
graph.print();

输出

Initial Graph:
A -> B, C
B -> A, D
C -> A, D
D -> B, C
Graph after removal of edge AC:
A -> B
B -> A, D
C -> D
D -> B, C

图的遍历方法

图遍历是指访问图的所有顶点(或节点)并处理与其关联的信息的过程。图遍历是图算法中的重要操作,用于查找两个节点之间的最短路径、检测环路、查找连通分量等任务。

图遍历主要有两种方法:广度优先搜索(BFS)和深度优先搜索(DFS)

A.广度优先搜索(BFS)

它是使用breadthFirstSearch()函数实现的。该函数实现广度优先搜索算法并采用 start 参数,即起始顶点。它使用队列来跟踪要访问的顶点,使用结果数组来存储访问过的顶点,并使用访问对象来跟踪已经访问过的顶点。该函数首先将起始顶点添加到队列中并将其标记为已访问。然后,当队列不为空时,它从队列中取出第一个顶点,将其添加到结果数组中,并将其标记为已访问。然后它将所有未访问的邻居添加到队列中。这个过程一直持续到所有顶点都被访问过,并且结果数组作为 BFS 的结果返回。

breadthFirstSearch(start) {
   const queue = [start];
   const result = [];
   const visited = {};
   let currentVertex;
   visited[start] = true;
   while (queue.length) {
      currentVertex = queue.shift();
      result.push(currentVertex);
         this.adjacencyList[currentVertex].forEach((neighbor) => {
            if (!visited[neighbor]) {
               visited[neighbor] = true;
               queue.push(neighbor);
            }
         });
      }
      return result;
   }
}

B。深度优先搜索

深度优先搜索方法通过使用以顶点作为参数的递归内部函数 dfs 来实现 DFS 算法。该函数使用访问的对象来跟踪访问的顶点,并将每个访问的顶点添加到结果数组中。该函数首先将当前顶点标记为已访问并将其添加到结果数组中。然后,它迭代当前顶点的所有邻居,并为每个未访问的邻居递归调用 dfs 函数。该过程一直持续到所有顶点都被访问过并且结果数组作为 DFS 的结果返回。

depthFirstSearch(start) {
   const result = [];
   const visited = {};
   const adjacencyList = this.adjacencyList;
   (function dfs(vertex) {
      if (!vertex) return null;
      visited[vertex] = true;
      result.push(vertex);
      adjacencyList[vertex].forEach(neighbor => {
         if (!visited[neighbor]) {
            return dfs(neighbor);
         }
      });
   })(start);
   return result;
}

示例

在下面的示例中,我们演示了广度优先搜索(BFS)和深度优先搜索(DFS)。

class Graph {
   constructor() {
      this.adjacencyList = {};
   }
   addVertex(vertex) {
      if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
   }
   addEdge(vertex1, vertex2) {
      this.adjacencyList[vertex1].push(vertex2);
      this.adjacencyList[vertex2].push(vertex1);
   }
   print() {
      for (const [vertex, edges] of Object.entries(this.adjacencyList)) {
         console.log(`${vertex} -> ${edges.join(", ")}`);
      }
   }
   breadthFirstSearch(start) {
      const queue = [start];
      const result = [];
      const visited = {};
      let currentVertex;
      visited[start] = true;
      while (queue.length) {
         currentVertex = queue.shift();
         result.push(currentVertex);
         this.adjacencyList[currentVertex].forEach((neighbor) => {
            if (!visited[neighbor]) {
               visited[neighbor] = true;
               queue.push(neighbor);
            }
         });
      }
      return result;
   }
   depthFirstSearch(start) {
      const result = [];
      const visited = {};
      const adjacencyList = this.adjacencyList;
      (function dfs(vertex) {
         if (!vertex) return null;
         visited[vertex] = true;
         result.push(vertex);
         adjacencyList[vertex].forEach(neighbor => {
            if (!visited[neighbor]) {
               return dfs(neighbor);
            }
         });
      })(start);
      return result;
   }
}
const graph = new Graph();
graph.addVertex("A");
graph.addVertex("B");
graph.addVertex("C");
graph.addVertex("D");
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("B", "D");
graph.addEdge("C", "D");
console.log("Initial Graph:");
graph.print();
console.log("BFS: "+graph.breadthFirstSearch('A'));
console.log("DFS: "+graph.depthFirstSearch('A'));

输出

Initial Graph:
A -> B, C
B -> A, D
C -> A, D
D -> B, C
BFS: A,B,C,D
DFS: A,B,D,C

结论

图是一种有用的数据结构,可用于表示对象之间的关系和连接。在 JavaScript 中实现图可以使用多种技术来完成,包括使用邻接列表或邻接矩阵。本答案中演示的 Graph 类使用邻接列表表示形式,其中每个顶点都作为键存储在对象中,其相应的边作为该键的值存储在数组中。

Graph 类实现了向图形添加顶点和边、打印图形以及执行深度优先搜索和广度优先搜索遍历的方法。

java速学教程(入门到精通)
java速学教程(入门到精通)

java怎么学习?java怎么入门?java在哪学?java怎么学才快?不用担心,这里为大家提供了java速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
treenode的用法
treenode的用法

​在计算机编程领域,TreeNode是一种常见的数据结构,通常用于构建树形结构。在不同的编程语言中,TreeNode可能有不同的实现方式和用法,通常用于表示树的节点信息。更多关于treenode相关问题详情请看本专题下面的文章。php中文网欢迎大家前来学习。

537

2023.12.01

C++ 高效算法与数据结构
C++ 高效算法与数据结构

本专题讲解 C++ 中常用算法与数据结构的实现与优化,涵盖排序算法(快速排序、归并排序)、查找算法、图算法、动态规划、贪心算法等,并结合实际案例分析如何选择最优算法来提高程序效率。通过深入理解数据结构(链表、树、堆、哈希表等),帮助开发者提升 在复杂应用中的算法设计与性能优化能力。

17

2025.12.22

深入理解算法:高效算法与数据结构专题
深入理解算法:高效算法与数据结构专题

本专题专注于算法与数据结构的核心概念,适合想深入理解并提升编程能力的开发者。专题内容包括常见数据结构的实现与应用,如数组、链表、栈、队列、哈希表、树、图等;以及高效的排序算法、搜索算法、动态规划等经典算法。通过详细的讲解与复杂度分析,帮助开发者不仅能熟练运用这些基础知识,还能在实际编程中优化性能,提高代码的执行效率。本专题适合准备面试的开发者,也适合希望提高算法思维的编程爱好者。

25

2026.01.06

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

407

2023.08.14

Python 自然语言处理(NLP)基础与实战
Python 自然语言处理(NLP)基础与实战

本专题系统讲解 Python 在自然语言处理(NLP)领域的基础方法与实战应用,涵盖文本预处理(分词、去停用词)、词性标注、命名实体识别、关键词提取、情感分析,以及常用 NLP 库(NLTK、spaCy)的核心用法。通过真实文本案例,帮助学习者掌握 使用 Python 进行文本分析与语言数据处理的完整流程,适用于内容分析、舆情监测与智能文本应用场景。

9

2026.01.27

拼多多赚钱的5种方法 拼多多赚钱的5种方法
拼多多赚钱的5种方法 拼多多赚钱的5种方法

在拼多多上赚钱主要可以通过无货源模式一件代发、精细化运营特色店铺、参与官方高流量活动、利用拼团机制社交裂变,以及成为多多进宝推广员这5种方法实现。核心策略在于通过低成本、高效率的供应链管理与营销,利用平台社交电商红利实现盈利。

107

2026.01.26

edge浏览器怎样设置主页 edge浏览器自定义设置教程
edge浏览器怎样设置主页 edge浏览器自定义设置教程

在Edge浏览器中设置主页,请依次点击右上角“...”图标 > 设置 > 开始、主页和新建标签页。在“Microsoft Edge 启动时”选择“打开以下页面”,点击“添加新页面”并输入网址。若要使用主页按钮,需在“外观”设置中开启“显示主页按钮”并设定网址。

13

2026.01.26

苹果官方查询网站 苹果手机正品激活查询入口
苹果官方查询网站 苹果手机正品激活查询入口

苹果官方查询网站主要通过 checkcoverage.apple.com/cn/zh/ 进行,可用于查询序列号(SN)对应的保修状态、激活日期及技术支持服务。此外,查找丢失设备请使用 iCloud.com/find,购买信息与物流可访问 Apple (中国大陆) 订单状态页面。

121

2026.01.26

npd人格什么意思 npd人格有什么特征
npd人格什么意思 npd人格有什么特征

NPD(Narcissistic Personality Disorder)即自恋型人格障碍,是一种心理健康问题,特点是极度夸大自我重要性、需要过度赞美与关注,同时极度缺乏共情能力,背后常掩藏着低自尊和不安全感,影响人际关系、工作和生活,通常在青少年时期开始显现,需由专业人士诊断。

6

2026.01.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号