0

0

两两乘积之和

WBOY

WBOY

发布时间:2023-09-11 19:33:02

|

1660人浏览过

|

来源于tutorialspoint

转载

两两乘积之和

集合X = {a, b, c}的成对乘积可以定义为所有可能的集合对乘积的和。集合的成对为Y = {a * a, a * b, a *c, b * b, b * c, c * c},其中乘积是可交换的。因此,集合X的成对乘积是集合Y的元素之和,即aa + ab + ac + bb + bc + cc。

在数学术语中,可能的配对乘积的总和可以表示为:

$$\mathrm{\displaystyle\sum\limits_{i=1,j=i}^{i\leq n,j\leq n}\:(i,j)=i\time j}$$

问题陈述

给定一个数字n。在范围(1,n)内,包括n和1,找到成对乘积的总和。

示例示例1

Input: n = 4
Output: 65

Explanation

的中文翻译为:

解释

i的范围从1到4,j的范围从i到4。

1*1 + 1*2 + 1*3 + 1*4 + 2*2 + 2*3 + 2*4 + 3*3 + 3*4 + 4*4 = 1 + 2 + 3 + 4 + 4 + 6 + 8 + 9 + 12 + 16 = 65

示例示例2

Input: n = 10
Output: 1705

Explanation

的中文翻译为:

解释

i的范围从1到10,j的范围从i到10。

1*1 + 1*2 + … + 1*10 + 2*2 + 2*3 + … + 2*10 + 3*3 + 3*4 + … + 3*10 + 4*4 + 4 *5 + … 4*10 + 5*5 + 5*6 + … + 5*10 + 6*6 + 6*7 + … 6*10 + 7*7 + 7*8 + … 7*10 + 8* 8 + 8*9 + 8*10 + 9*9 + 9*10 + 10*10 = 1705

方法一:暴力破解方法

解决这个问题的蛮力解法是使用两个for循环迭代范围内的所有可能的数对,其中第一个循环从1到n迭代,第二个循环从第一个数迭代到n。

伪代码

procedure pairwiseProduct (n)
   sum = 0
   for i = 1 to n
      for j = i to n
         sum = sum + (i * j)
end procedure

示例:C++实现

在以下程序中,我们找到所有可能的配对,然后找到乘积的和。

#include 
using namespace std;

// Function to find pairwise product over the range 1 to n, 1 and n inclusive
unsigned long long pairwiseProduct(unsigned int n){
   unsigned long long sum = 0;
   
   // First number: 1 <= i <= n
   for (unsigned int i = 1; i <= n; i++){
   
      // Second number: i <= j <= n
      for (unsigned int j = i; j <= n; j++){
         sum += i * j;
      }
   }
   return sum;
}
int main(){
   unsigned long long n = 9;
   cout << "Pairwise Product = " << pairwiseProduct(n);
   return 0;
}

输出

Pairwise Product = 1155

时间复杂度 - O(n^2)

空间复杂度 - O(1)

廊坊供求信息网
廊坊供求信息网

1:强大的用户管理面版2:分为无需注册的免费发布和VIP注册发布/管理两个系统功能3:注册简便,发布信息管理信息等都相当简单4:用户积分制度5:4 个非常实用的道具(在后台设置道具参数)标题变色道具 (改变标题颜色)信息置顶道具 (能使发布信息置顶,使用个数越多,位置越高)内容贴图道具 (可以发和信息相关的图片)通过验证道具 (可不通过管理员审核,直接发布)6:采用虚拟货币制度,可以在线购买虚拟货

下载

方法二

以n = 4为例,

I = 1*1 + 1*2 + 1*3 + 1*4 + 2*2 + 2*3 + 2*4 + 3*3 + 3*4 + 4*4

在简化上述内容时,

I = 1*1 + (1+2)*2 + (1+2+3)*3 + (1+2+3+4)*4

取prefix_sum[1] = 1,

前缀总和[2] = 1+2,

前缀总和[3] = 1+2+3,

前缀总和[2] = 1+2,

伪代码

procedure pairwiseProduct (n)
   sum = 0
   prefixSum = 0
   for i = 1 to n
      prefixSum = prefixSum + 1
      sum = sum + i * prefixSum
end procedure

示例:C++实现

在下面的程序中,我们找到每次迭代的和,即前缀和,并乘以迭代次数,然后在每一步中加到最终和中。

#include 
using namespace std;

// Function to find pairwise product over the range 1 to n, 1 and n inclusive
unsigned long long pairwiseProduct(unsigned int n){
   unsigned long long sum = 0;
   unsigned long long prefixSum = 0;
   for (unsigned int i = 1; i <= n; i++){
      prefixSum += i;
      sum += i * prefixSum;
   }
   return sum;
}
int main(){
   unsigned long long n = 9;
   cout << "Pairwise Product = " << pairwiseProduct(n);
   return 0;
}

输出

Pairwise Product = 1155

结论

总之,对于在范围1到n内的数字的两两乘积之和的求解,我们可以采用上述两种方法之一,其中第一种方法是暴力法,时间复杂度为O(n^2),第二种方法是使用前缀和来计算两两乘积之和的优化方法,时间复杂度为O(n)。

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
Python 自然语言处理(NLP)基础与实战
Python 自然语言处理(NLP)基础与实战

本专题系统讲解 Python 在自然语言处理(NLP)领域的基础方法与实战应用,涵盖文本预处理(分词、去停用词)、词性标注、命名实体识别、关键词提取、情感分析,以及常用 NLP 库(NLTK、spaCy)的核心用法。通过真实文本案例,帮助学习者掌握 使用 Python 进行文本分析与语言数据处理的完整流程,适用于内容分析、舆情监测与智能文本应用场景。

6

2026.01.27

拼多多赚钱的5种方法 拼多多赚钱的5种方法
拼多多赚钱的5种方法 拼多多赚钱的5种方法

在拼多多上赚钱主要可以通过无货源模式一件代发、精细化运营特色店铺、参与官方高流量活动、利用拼团机制社交裂变,以及成为多多进宝推广员这5种方法实现。核心策略在于通过低成本、高效率的供应链管理与营销,利用平台社交电商红利实现盈利。

104

2026.01.26

edge浏览器怎样设置主页 edge浏览器自定义设置教程
edge浏览器怎样设置主页 edge浏览器自定义设置教程

在Edge浏览器中设置主页,请依次点击右上角“...”图标 > 设置 > 开始、主页和新建标签页。在“Microsoft Edge 启动时”选择“打开以下页面”,点击“添加新页面”并输入网址。若要使用主页按钮,需在“外观”设置中开启“显示主页按钮”并设定网址。

12

2026.01.26

苹果官方查询网站 苹果手机正品激活查询入口
苹果官方查询网站 苹果手机正品激活查询入口

苹果官方查询网站主要通过 checkcoverage.apple.com/cn/zh/ 进行,可用于查询序列号(SN)对应的保修状态、激活日期及技术支持服务。此外,查找丢失设备请使用 iCloud.com/find,购买信息与物流可访问 Apple (中国大陆) 订单状态页面。

102

2026.01.26

npd人格什么意思 npd人格有什么特征
npd人格什么意思 npd人格有什么特征

NPD(Narcissistic Personality Disorder)即自恋型人格障碍,是一种心理健康问题,特点是极度夸大自我重要性、需要过度赞美与关注,同时极度缺乏共情能力,背后常掩藏着低自尊和不安全感,影响人际关系、工作和生活,通常在青少年时期开始显现,需由专业人士诊断。

5

2026.01.26

windows安全中心怎么关闭 windows安全中心怎么执行操作
windows安全中心怎么关闭 windows安全中心怎么执行操作

关闭Windows安全中心(Windows Defender)可通过系统设置暂时关闭,或使用组策略/注册表永久关闭。最简单的方法是:进入设置 > 隐私和安全性 > Windows安全中心 > 病毒和威胁防护 > 管理设置,将实时保护等选项关闭。

6

2026.01.26

2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】
2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】

铁路12306提供起售时间查询、起售提醒、购票预填、候补购票及误购限时免费退票五项服务,并强调官方渠道唯一性与信息安全。

105

2026.01.26

个人所得税税率表2026 个人所得税率最新税率表
个人所得税税率表2026 个人所得税率最新税率表

以工资薪金所得为例,应纳税额 = 应纳税所得额 × 税率 - 速算扣除数。应纳税所得额 = 月度收入 - 5000 元 - 专项扣除 - 专项附加扣除 - 依法确定的其他扣除。假设某员工月工资 10000 元,专项扣除 1000 元,专项附加扣除 2000 元,当月应纳税所得额为 10000 - 5000 - 1000 - 2000 = 2000 元,对应税率为 3%,速算扣除数为 0,则当月应纳税额为 2000×3% = 60 元。

29

2026.01.26

oppo云服务官网登录入口 oppo云服务登录手机版
oppo云服务官网登录入口 oppo云服务登录手机版

oppo云服务https://cloud.oppo.com/可以在云端安全存储您的照片、视频、联系人、便签等重要数据。当您的手机数据意外丢失或者需要更换手机时,可以随时将这些存储在云端的数据快速恢复到手机中。

82

2026.01.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.9万人学习

Git 教程
Git 教程

共21课时 | 3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号