0

0

C++程序以给定值找到双曲反正切

PHPz

PHPz

发布时间:2023-09-01 08:13:11

|

793人浏览过

|

来源于tutorialspoint

转载

c++程序以给定值找到双曲反正切

使用双曲线而不是圆来定义双曲函数。它根据提供的弧度角返回双曲正切函数的比率参数。然而恰恰相反。要根据双曲正切值计算角度,需要使用反双曲三角函数(如双曲反正切运算)。

本文将演示如何利用 C++ 双曲反正切 (atanh) 函数通过双曲正切值(以弧度为单位)确定角度。双曲反正切运算具有以下公式 -

$$\mathrm{cosh^{-1}x\:=\:\frac{1}{2}In\left(\frac{1\:+\:x}{1\:-\:x}\right)},其中\:In\:表示\:自然对数\:(log_e \: k)$$

atanh()函数

可以使用 atanh() 函数根据双曲正切值计算角度。该函数是 C++ 标准库的一部分。使用此功能之前需要导入cmath库。当提供双曲正切值时,此过程提供以弧度为单位的角度。以下使用简单的语法 -

立即学习C++免费学习笔记(深入)”;

Creatie
Creatie

Creatie AI是一款专为UI/UX设计师打造的AI增强设计工具,致力于通过AI优化设计流程

下载

语法

#include  − cmath >
atanh( −hyperbolic tangent value> )

该函数的输入范围是[-1到1](包括两者)。如果输入超出此范围,则会引发域错误。

算法

  • 以超bolic正切值x作为输入
  • 使用 atanh( x ) 计算 tanh−1(x)
  • 返回结果。

示例

#include 
#include 

using namespace std;
float solve( float x ) {
   float answer;
   answer = atanh( x );
   return answer;
}

int main()
{
   float angle, ang_deg;
   angle = solve( 0.9171521 );
   ang_deg = angle * 180 / 3.14159;

   cout << "The angle (in radian) for given hyperbolic tangent value 0.9171521 is: " << angle << " = " << ang_deg << " (in degrees)" << endl;

   angle = solve( 0.996272 );
   ang_deg = angle * 180 / 3.14159;

   cout << "The angle (in radian) for given hyperbolic tangent value 0.996272 is: " << angle << " = " << ang_deg << " (in degrees)" << endl;

   angle = solve( 0.655794 );
   ang_deg = angle * 180 / 3.14159;

   cout << "The angle (in radian) for given hyperbolic tangent value 0.655794 is: " << angle << " = " << ang_deg << " (in degrees)" << endl;

   angle = solve( -0.655794 );
   ang_deg = angle * 180 / 3.14159;

   cout << "The angle (in radian) for given hyperbolic tangent value - 0.655794 is: " << angle << " = " << ang_deg << " (in degrees)" << endl;
}

输出

The angle (in radian) for given hyperbolic tangent value 0.9171521 is: 1.57079 = 90 (in degrees)
The angle (in radian) for given hyperbolic tangent value 0.996272 is: 3.14159 = 180 (in degrees)
The angle (in radian) for given hyperbolic tangent value 0.655794 is: 0.785398 = 45 (in degrees)The angle (in radian) for given hyperbolic tangent value - 0.655794 is: -0.785398 = -45 (in degrees)

atanh()方法接收双曲正切的值并返回以弧度格式表示的角度。我们使用下面的公式将这个输出从弧度转换为度数。

$$\mathrm{\theta_{deg}\:=\:\theta_{rad}\:\times\frac{180}{\pi}}$$

结论

我们使用双曲正切值来进行反双曲操作,使用cmath库中的atanh()函数。根据双曲正切的输入值,该函数返回所需的弧度角度。输入的范围是-1到+1。当输入值超出范围时,会引发域错误。在早期的C和C++迭代中,返回类型是double;在后续的C++迭代中,还使用了float和long-double的重载形式。当提供整数值作为参数时,将把输入参数转换为double类型后使用atanh()方法。

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
C++ 设计模式与软件架构
C++ 设计模式与软件架构

本专题深入讲解 C++ 中的常见设计模式与架构优化,包括单例模式、工厂模式、观察者模式、策略模式、命令模式等,结合实际案例展示如何在 C++ 项目中应用这些模式提升代码可维护性与扩展性。通过案例分析,帮助开发者掌握 如何运用设计模式构建高质量的软件架构,提升系统的灵活性与可扩展性。

8

2026.01.30

c++ 字符串格式化
c++ 字符串格式化

本专题整合了c++字符串格式化用法、输出技巧、实践等等内容,阅读专题下面的文章了解更多详细内容。

9

2026.01.30

java 字符串格式化
java 字符串格式化

本专题整合了java如何进行字符串格式化相关教程、使用解析、方法详解等等内容。阅读专题下面的文章了解更多详细教程。

8

2026.01.30

python 字符串格式化
python 字符串格式化

本专题整合了python字符串格式化教程、实践、方法、进阶等等相关内容,阅读专题下面的文章了解更多详细操作。

1

2026.01.30

java入门学习合集
java入门学习合集

本专题整合了java入门学习指南、初学者项目实战、入门到精通等等内容,阅读专题下面的文章了解更多详细学习方法。

20

2026.01.29

java配置环境变量教程合集
java配置环境变量教程合集

本专题整合了java配置环境变量设置、步骤、安装jdk、避免冲突等等相关内容,阅读专题下面的文章了解更多详细操作。

17

2026.01.29

java成品学习网站推荐大全
java成品学习网站推荐大全

本专题整合了java成品网站、在线成品网站源码、源码入口等等相关内容,阅读专题下面的文章了解更多详细推荐内容。

19

2026.01.29

Java字符串处理使用教程合集
Java字符串处理使用教程合集

本专题整合了Java字符串截取、处理、使用、实战等等教程内容,阅读专题下面的文章了解详细操作教程。

3

2026.01.29

Java空对象相关教程合集
Java空对象相关教程合集

本专题整合了Java空对象相关教程,阅读专题下面的文章了解更多详细内容。

6

2026.01.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 3.7万人学习

Excel 教程
Excel 教程

共162课时 | 14.3万人学习

Kotlin 教程
Kotlin 教程

共23课时 | 3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号