0

0

高级主定理用于分治递归

王林

王林

发布时间:2023-08-31 21:09:17

|

1017人浏览过

|

来源于tutorialspoint

转载

高级主定理用于分治递归

分而治之 是一种基于递归地将问题分解为多个相似类型的子问题,并且这些子问题可以很容易地解决的算法。

示例

让我们举一个例子来更深入地了解分而治之的技巧 -

function recursive(input x size n)
   if(n < k)
      Divide the input into m subproblems of size n/p.
      and call f recursively of each sub problem
   else
      Solve x and return

Combine the results of all subproblems and return the solution to the original problem.

Explanation − In the above problem, the problem set is to be subdivided into smaller subproblems that can be solved easily.

Masters Theorem for divide and conquer is an analysis theorem that can be used to determine a big-0 value for recursive relation algorithms. It is used to find the time required by the algorithm and represent it in asymptotic notation form.

Example of runtime value of the problem in the above example −

T(n) = f(n) + m.T(n/p)

For most of the recursive algorithm, you will be able to find the Time complexity For the algorithm using the master's theorem, but there are some cases master's theorem may not be applicable. These are the cases in which the master's theorem is not applicable. When the problem T(n) is not monotone, for example, T(n) = sin n. Problem function f(n) is not a polynomial.

As the master theorem to find time complexity is not hot efficient in these cases, and advanced master theorem for recursive recurrence was designed. It is design to handle recurrence problem of the form −

BJXSHOP网上开店专家
BJXSHOP网上开店专家

BJXShop网上购物系统是一个高效、稳定、安全的电子商店销售平台,经过近三年市场的考验,在中国网购系统中属领先水平;完善的订单管理、销售统计系统;网站模版可DIY、亦可导入导出;会员、商品种类和价格均实现无限等级;管理员权限可细分;整合了多种在线支付接口;强有力搜索引擎支持... 程序更新:此版本是伴江行官方商业版程序,已经终止销售,现于免费给大家使用。比其以前的免费版功能增加了:1,整合了论坛

下载
T(n) = aT(n/b) + ø((n^k)logpn)

其中 n 是问题的规模。

a = 递归中的子问题数量,a > 0

n/b = 每个子问题的规模 b > 1,k >= 0,p 是一个实数。

为了解决这种类型的问题,我们将使用以下解决方案:

  • 如果 a > bk,那么 T(n) = ∅ (nlogba)
  • 如果 a = bk,那么
    • 如果 p > -1,那么 T(n) = ∅(nlogba logp+1n)
    • 如果 p = -1,那么 T(n) = ∅(nlogba loglogn)
    • 如果 p ba)
  • 如果 a k,那么
    • 如果 p > = 0,那么 T(n)= ∅(nklogpn)
    • 如果 p

使用高级主算法,我们将计算一些算法的复杂度 −

二分查找 − t(n) = θ(logn)

归并排序 − T(n) = θ(nlogn)

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
function是什么
function是什么

function是函数的意思,是一段具有特定功能的可重复使用的代码块,是程序的基本组成单元之一,可以接受输入参数,执行特定的操作,并返回结果。本专题为大家提供function是什么的相关的文章、下载、课程内容,供大家免费下载体验。

483

2023.08.04

js函数function用法
js函数function用法

js函数function用法有:1、声明函数;2、调用函数;3、函数参数;4、函数返回值;5、匿名函数;6、函数作为参数;7、函数作用域;8、递归函数。本专题提供js函数function用法的相关文章内容,大家可以免费阅读。

163

2023.10.07

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

409

2023.08.14

clawdbot ai使用教程 保姆级clawdbot部署安装手册
clawdbot ai使用教程 保姆级clawdbot部署安装手册

Clawdbot是一个“有灵魂”的AI助手,可以帮用户清空收件箱、发送电子邮件、管理日历、办理航班值机等等,并且可以接入用户常用的任何聊天APP,所有的操作均可通过WhatsApp、Telegram等平台完成,用户只需通过对话,就能操控设备自动执行各类任务。

19

2026.01.29

clawdbot龙虾机器人官网入口 clawdbot ai官方网站地址
clawdbot龙虾机器人官网入口 clawdbot ai官方网站地址

clawdbot龙虾机器人官网入口:https://clawd.bot/,clawdbot ai是一个“有灵魂”的AI助手,可以帮用户清空收件箱、发送电子邮件、管理日历、办理航班值机等等,并且可以接入用户常用的任何聊天APP,所有的操作均可通过WhatsApp、Telegram等平台完成,用户只需通过对话,就能操控设备自动执行各类任务。

16

2026.01.29

Golang 网络安全与加密实战
Golang 网络安全与加密实战

本专题系统讲解 Golang 在网络安全与加密技术中的应用,包括对称加密与非对称加密(AES、RSA)、哈希与数字签名、JWT身份认证、SSL/TLS 安全通信、常见网络攻击防范(如SQL注入、XSS、CSRF)及其防护措施。通过实战案例,帮助学习者掌握 如何使用 Go 语言保障网络通信的安全性,保护用户数据与隐私。

8

2026.01.29

俄罗斯Yandex引擎入口
俄罗斯Yandex引擎入口

2026年俄罗斯Yandex搜索引擎最新入口汇总,涵盖免登录、多语言支持、无广告视频播放及本地化服务等核心功能。阅读专题下面的文章了解更多详细内容。

567

2026.01.28

包子漫画在线官方入口大全
包子漫画在线官方入口大全

本合集汇总了包子漫画2026最新官方在线观看入口,涵盖备用域名、正版无广告链接及多端适配地址,助你畅享12700+高清漫画资源。阅读专题下面的文章了解更多详细内容。

209

2026.01.28

ao3中文版官网地址大全
ao3中文版官网地址大全

AO3最新中文版官网入口合集,汇总2026年主站及国内优化镜像链接,支持简体中文界面、无广告阅读与多设备同步。阅读专题下面的文章了解更多详细内容。

350

2026.01.28

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Java 教程
Java 教程

共578课时 | 53.2万人学习

Vue.js 微实战--十天技能课堂
Vue.js 微实战--十天技能课堂

共18课时 | 1.1万人学习

PHP基础入门课程
PHP基础入门课程

共33课时 | 2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号