0

0

Java如何实现后缀表达式计算

WBOY

WBOY

发布时间:2023-04-25 17:16:20

|

1295人浏览过

|

来源于亿速云

转载

中缀表示法java实现

观察一个普通的算式:3+4*5

我们当然知道,应该先计算 4*5 再将这个结果和3相加,就能得到最后的结果。

如果是一个复杂一些的算式:3+4*((5-6)/7+8)

这依然难不倒我们,只要牢记()的优先级最高,然后是*/,最后是+-就没问题了,这就是通常的中缀表示法。

但是通过算法分析,这样的表达式,由于每一次都需要判断优先级,所以运行的时间应当是O(N^2)。

立即学习Java免费学习笔记(深入)”;

在表达式很长很复杂的时候,就需要一种更适合计算机的算法来计算了。

后缀表示法

简介

逆波兰表示法(Reverse Polish notation,RPN,或逆波兰记法),是一种是由波兰数学家扬·武卡谢维奇1920年引入的数学表达式方式,在逆波兰记法中,所有操作符置于操作数的后面,因此也被称为后缀表示法。

逆波兰记法不需要括号来标识操作符的优先级。逆波兰记法中,操作符置于操作数的后面。

例如表达“三加四”时,写作“3 4 +”,而不是“3 +4”。如果有多个操作符,操作符置于第二个操作数的后面,所以常规中缀记法的“3 - 4 + 5”在逆波兰记法中写作“3 4 - 5+”:先3减去4,再加上5。——维基百科逆波兰表示法词条。

这种表示法有以下特点:

  • 不需要使用括号。和中缀表达式不同,逆波兰表达式不需要遍历整个算式来寻找一对括号。

  • 逆波兰表达式的实现一般基于堆栈。在计算机中,堆栈这种数据结构具有极快的效率。运行时间是O(N)。

  • 不满足交换律。

逆波兰表达式的计算方式

例如2*3+4*5

你可以这么计算,2 和 3 相乘的和是 5,把这个数存起来,再计算 4*5 的值,存起来, 最后在计算两个存在一起的值。写出来是这样子的 2 3 * 4 5 * + 。这就是后缀或逆波兰记法。

采用堆栈实现的过程很简单,规则如下。

从头开始读取。读取到如果是数字,则将其压入栈中。如果是一个符号,就取两次栈顶的元素通过该符号进行计算,再把得到的数压入栈中。

Java实现

Trickle AI
Trickle AI

多功能零代码AI应用开发平台

下载
public class PRNCalculator {    
       public static double PRNCal(String PRN){
              Stack stack = new Stack();
              String[] ss = PRN.split(" ");
              for(int i = 0; i < ss.length; i++){
                     if(ss[i].matches("\\d")) stack.push(Double.valueOf(ss[i]));
                     if(ss[i].matches("[+|-|*|/]")){
                           double b = stack.pop();
                           double a = stack.pop();
                           if(ss[i].equals("+")) stack.push(a + b);
                           if(ss[i].equals("-")) stack.push(a - b);
                           if(ss[i].equals("*")) stack.push(a * b);
                           if(ss[i].equals("/")) stack.push(a / b);
                     }
              }
              return stack.pop();
       }
}

Test类

public class PRNTest {
       public static void main(String[] args) {
              String s = "2 3 * 4 5 * + ";
              double result = PRNCalculator.PRNCal(s);
              System.out.println("输入的逆波兰表达式:" + s);
              System.out.println("计算结果:" + result);
       }
}

打印结果:

输入的逆波兰表达式:2 3 * 4 5 * +计算结果:26.0

与中缀记法的转换

和后缀表达式的计算方法类似,一个中缀记法转换到后缀记法,也可以利用堆栈来实现。

从头开始读取。如果读取到的是数字,将其输出。如果读取到的是符号,则判断该符号的优先级是否高于栈顶或栈为空,是,则压入栈中;否,则将栈顶输出并继续判断。如果读取到的是括号,”(“会直接被压入栈;在读取到”)”的时候,栈会一直弹出直到遇到”(“。下面是这个转换的Java实现。

package PRNCalculator;
import java.util.Stack;
public class PRNCalculator {
       public static String PRNTansf(String s){
              Stack stack = new Stack();
              String[] ss = s.split(" ");
              StringBuffer sb = new StringBuffer();
              for(int i = 0; i < ss.length; i++){
                     if(ss[i].matches("\\d")) sb.append(ss[i] + " ");
                     if(ss[i].matches("[+|-|*|/|(|)]")) {
                           if(stack.isEmpty()) {
                                  stack.push(ss[i]);
                           } else {
                                  if(ss[i].matches("[+|-]")) {
                                         while(!stack.isEmpty() && !stack.peek().matches("[(]")) sb.append(stack.pop()).append(" ");
                                         if(stack.isEmpty() || stack.peek().matches("[(]")) stack.push(ss[i]);
                                  }
                                  if(ss[i].matches("[*|/]")){
                                         while(stack.peek().matches("[*|/]") && !stack.peek().matches("[(]")) sb.append(stack.pop()).append(" ");
                                         if(stack.isEmpty() || stack.peek().matches("[(]") || stack.peek().matches("[+|-]")) stack.push(ss[i]);
                                  }
                                  if(ss[i].matches("[(]")) {
                                         stack.push(ss[i]);
                                  }
                                  if(ss[i].matches("[)]")){
                                         while(!stack.peek().matches("[(]")) sb.append(stack.pop()).append(" ");
                                         if(stack.peek().matches("[(]")) stack.pop();
                                  }
                           }
                     }
              }
              while(!stack.isEmpty()) sb.append(stack.pop()).append(" ");
              return sb.toString();
       }
}
* Test类*

package PRNCalculator;
public class PRNTest {
       public static void main(String[] args) {
              String s = "4 + 5 + 8 * ( 6 + 8 * 7 ) / 3 + 4";
              String PRN = PRNCalculator.PRNTansf(s);
              System.out.println("输入的表达式为:");
              System.out.println(s);
              System.out.println("输出的逆波兰表达式为:");
              System.out.println(PRN);
              double result = PRNCalculator.PRNCal(PRN);
              System.out.println("该表达式计算结果为:");
              System.out.println(result);
       }
}

打印结果:

输入的表达式为:
4 + 5 + 8 * ( 6 + 8 * 7 ) / 3 + 4
输出的逆波兰表达式为:
4 5 + 8 6 8 7 * + * 3 / + 4 +
该表达式计算结果为:
178.33333333333334

java后缀表达式的计算

实现方法

从左至右扫描表达式

遇到数字时,将数字压栈,遇到运算符时,弹出栈顶的两个数,计算并将结果入栈

重复2直到表达式最右端,最后运算得出的值即为表达式的结果

示例

计算后缀表达式的值:1 2 3 + 4 × + 5 -

从左至右扫描,将1,2,3压入栈;

遇到+运算符,3和2弹出,计算2+3的值,得到5,将5压入栈;

遇到4,将4压入栈

遇到×运算符,弹出4和5,计算5×4的值,得到20,将20压入栈;

遇到+运算符,弹出20和1,计算1+20的值,得到21,将21压入栈;

遇到5,将5压入栈;

遇到-运算符,弹出5和21,计算21-5的值,得到16为最终结果

代码实现

public class ReversePolishNotation {

    public static void main(String[] args) {
        String notation = "10 2 3 + 4 * + 5 -";
        ReversePolishNotation reversePN = new ReversePolishNotation();
        Stack numStack = new Stack<>();
        //以空格分隔上述表达式,存到数组中
        String[] s = notation.split(" ");
        //遍历数组
        for (int i = 0; i < s.length; i++) {
            if (!reversePN.isOperator(s[i])){
                //如果不是运算符,则压栈
                numStack.push(Integer.parseInt(s[i]));
            } else {
                //为运算符,则取出栈顶的两个数字进行运算
                int result = reversePN.calculation(numStack.pop(), numStack.pop(), s[i]);
                //将结果压栈
                numStack.push(result);
            }
        }
        //循环结束,栈中仅剩的一个元素及为结果
        System.out.println(numStack.pop());
    }
    //判断是否是运算符
    public boolean isOperator(String oper){
        return oper.equals("+") ||oper.equals("-")  ||oper.equals("*")  ||oper.equals("/") ;
    }
    //计算
    public int calculation(int num1, int num2, String oper){
        switch (oper){
            case "+":
                return num2 + num1;
            case "-":
                return num2 - num1;
            case "*":
                return num2 * num1;
            case "/":
                return num2 / num1;
            default:
                return 0;
        }
    }
}

相关文章

java速学教程(入门到精通)
java速学教程(入门到精通)

java怎么学习?java怎么入门?java在哪学?java怎么学才快?不用担心,这里为大家提供了java速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
C++ 高级模板编程与元编程
C++ 高级模板编程与元编程

本专题深入讲解 C++ 中的高级模板编程与元编程技术,涵盖模板特化、SFINAE、模板递归、类型萃取、编译时常量与计算、C++17 的折叠表达式与变长模板参数等。通过多个实际示例,帮助开发者掌握 如何利用 C++ 模板机制编写高效、可扩展的通用代码,并提升代码的灵活性与性能。

10

2026.01.23

php远程文件教程合集
php远程文件教程合集

本专题整合了php远程文件相关教程,阅读专题下面的文章了解更多详细内容。

29

2026.01.22

PHP后端开发相关内容汇总
PHP后端开发相关内容汇总

本专题整合了PHP后端开发相关内容,阅读专题下面的文章了解更多详细内容。

21

2026.01.22

php会话教程合集
php会话教程合集

本专题整合了php会话教程相关合集,阅读专题下面的文章了解更多详细内容。

21

2026.01.22

宝塔PHP8.4相关教程汇总
宝塔PHP8.4相关教程汇总

本专题整合了宝塔PHP8.4相关教程,阅读专题下面的文章了解更多详细内容。

13

2026.01.22

PHP特殊符号教程合集
PHP特殊符号教程合集

本专题整合了PHP特殊符号相关处理方法,阅读专题下面的文章了解更多详细内容。

11

2026.01.22

PHP探针相关教程合集
PHP探针相关教程合集

本专题整合了PHP探针相关教程,阅读专题下面的文章了解更多详细内容。

8

2026.01.22

菜鸟裹裹入口以及教程汇总
菜鸟裹裹入口以及教程汇总

本专题整合了菜鸟裹裹入口地址及教程分享,阅读专题下面的文章了解更多详细内容。

55

2026.01.22

Golang 性能分析与pprof调优实战
Golang 性能分析与pprof调优实战

本专题系统讲解 Golang 应用的性能分析与调优方法,重点覆盖 pprof 的使用方式,包括 CPU、内存、阻塞与 goroutine 分析,火焰图解读,常见性能瓶颈定位思路,以及在真实项目中进行针对性优化的实践技巧。通过案例讲解,帮助开发者掌握 用数据驱动的方式持续提升 Go 程序性能与稳定性。

9

2026.01.22

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Kotlin 教程
Kotlin 教程

共23课时 | 2.8万人学习

C# 教程
C# 教程

共94课时 | 7.4万人学习

Java 教程
Java 教程

共578课时 | 49.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号