0

0

如何使用JS求得数组的最小公倍数和最大公约数

php中世界最好的语言

php中世界最好的语言

发布时间:2018-05-31 10:18:46

|

3590人浏览过

|

来源于php中文网

原创

这次给大家带来如何使用JS求得数组的最小公倍数和最大公约数,使用JS求得数组的最小公倍数和最大公约数注意事项有哪些,下面就是实战案例,一起来看一下。

方法来自求多个数最小公倍数的一种变换算法(详见附录说明)

最小公倍数的算法由最大公约数转化而来。最大公约数可通过如下步骤求得:

(1) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个
(2) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4)
(3) 转到(1)
(4) a1,a2,..,an的最大公约数为aj

写了两个版本的javascript求公倍数和公约数,主要偏重于算法,没有太注意命名,很多就直接写的单字母名称。

0. 简单易懂的循环

function getMin(arr){
  var min = Infinity
  arr.forEach(function(item){
    if( item < min && item !=0 ){
      min = item
    }
  })
  return min
}
function howMuchZero(arr){
  var zerocount = 0
  arr.forEach( function(item){
    item === 0 ?
    zerocount++ : zerocount
  }
    )
  if(zerocount === arr.length -1) {
    return true
  }
  else return false
}
function maxpi(arr){
  do {
  var min = getMin(arr)
  arr = arr.map((item)=> item===min? item:item%min
    )
  }
  while (!howMuchZero(arr))
  return getMin(arr)
}
function minMulti(arr){
  var totalMulti = arr.reduce((pre,item)=>
    pre = pre * item
    )
  var brr = arr.map((item)=>
    totalMulti/item
    )
  var brr_maxpi = maxpi(brr)
  return totalMulti/brr_maxpi
}

1. function套function

var arr_minMulti, arr_maxpi
function minMulti(arr){
  var totalmulti =
    arr.reduce((multi,curvalue) => multi * curvalue)
  if (totalmulti === 0) {
    arr_minMulti = 0
    return
  }
  var marr = arr.map((item) => totalmulti/item)
  maxpisor(marr)
   arr_minMulti = totalmulti / arr_maxpi
}
function maxpisor(arr){
  var min = getMin(arr)
  if(min === Infinity) {
    arr_maxpi = min
    return
  }
  var exparr = arr.filter(function(item){
      return (item !== min && item !== 0)
  })
  if(exparr.length === 0){
    arr_maxpi = min
    return;
  }
  else{
    var modearr = arr.map(function(item){
      return (item === min||item===0)? item:item%min
    })
    console.log(modearr,'modearr')
    maxpisor(modearr)
  }
}
function getMin(arr){
  var min = Infinity
  arr.forEach(function(item){
    if (item && item < min) {
      min = item
    }
  })
  return min
}
arr =[13,20,10,26]
minMulti(arr)
console.log('最小公倍数',arr_minMulti)

2. object oriented 面向对象

function maxpisor(arr,origin){
  this.arr = arr
  this.min = this._getMin(arr)
  this.maxpisor = this._getMaxp()
  if(origin){
    this.minMulti = this._getMinMulti()
  }
}
maxpisor.prototype._getMin = function(arr) {
  var min = Infinity
  arr.forEach(item => min = (item && item < min)? item : min)
  return min
}
maxpisor.prototype._getMaxp = function() {
  var arr_maxpi
  var self = this,
    arr = this.arr
  function maxpisor(arr){
    //console.log(self._getMin)
    var min = self._getMin.call(null,arr)
     console.log(min,'min')
    if(min === Infinity) {
      arr_maxpi = 0
      return ;
    }
    var exparr = arr.filter( item => (item !== min && item != 0) )
    if(exparr.length === 0){
      arr_maxpi = min
      return;
    }
    else{
      var modearr = arr.map(item =>
        (item === min || item === 0)? item : item % min
      )
      maxpisor(modearr)
      }
  }
  maxpisor(this.arr)
  return arr_maxpi
}
maxpisor.prototype._getMinMulti = function(){
  var arr = this.arr,
    arr_minMulti
  var totalmulti =
    arr.reduce((multi,curvalue) => multi * curvalue)
  if (totalmulti === 0) {
    return 0
  }
  else {
    var marr = arr.map((item) => totalmulti/item),
    b = new maxpisor(marr,false)
    arr_minMulti = totalmulti / b.maxpisor
    return arr_minMulti
  }
}
var a = new maxpisor([12,9,6],true)
console.log(a)

附录:求多个数最小公倍数的一种变换算法原理分析

令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表示a1,a2,..,an的最大公约数,其中a1,a2,..,an为非负整数。对于两个数a,b,有[a,b]=ab/(a,b),因此两个数最小公倍数可以用其最大公约数计算。但对于多个数,并没有[a1,a2,..,an]=M/(a1,a2,..,an)成立,M为a1,a2,..,an的乘积。例如:[2,3,4]并不等于24/(2,3,4)。即两个数的最大公约数和最小公倍数之间的关系不能简单扩展为n个数的情况。

这里对多个数最小公倍数和多个数最大公约数之间的关系进行了探讨。将两个数最大公约数和最小公倍数之间的关系扩展到n个数的情况。在此基础上,利用求n个数最大公约数的向量变换算法计算多个数的最小公倍数。

1.多个数最小公倍数和多个数最大公约数之间的关系

令p为a1,a2,..,an中一个或多个数的素因子,a1,a2,..,an关于p的次数分别为r1,r2,..,rn,在r1,r2,..,rn中最大值为rc1=rc2=..=rcm=rmax,最小值为rd1=rd2=..=rdt=rmin,即r1,r2,..,rn中有m个数所含p的次数为最大值,有t个数所含p的次数为最小值。例如:4,12,16中关于素因子2的次数分别为2,2,4,有1个数所含2的次数为最大值,有2个数所含2的次数为最小值;关于素因子3的次数分别为0,1,0,有1个数所含3的次数为最大值,有2个数所含3的次数为最小值。

对最大公约数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最低次数,最低次数为0表示不包含[1]。

对最小公倍数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最高次数[1]。

定理1:[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an),其中M为a1,a2,..,an的乘积,a1,a2,..,an为正整数。

例如:对于4,6,8,10,有[4,6,8,10]=120,而M=4*6*8*10=1920,M/(M/a1,M/a2,..,M/an) =1920/(6*8*10,4*8*10,4*6*10,4*6*8)=1920/16=120。

证明:

M/a1,M/a2,..,M/an中p的次数都大于等于r1+r2+..+rn-rmax,且有p的次数等于r1+r2+..+rn-rmax的。这是因为

(1)M/ai中p的次数为r1+r2+..+rn-ri,因而M/a1,M/a2,..,M/an中p的次数最小为r1+r2+..+rn-rmax。

(2)对于a1,a2,..,an中p的次数最大的项aj(1项或多项),M/aj中p的次数为r1+r2+..+rn-rmax。

或者对于a1,a2,..,an中p的次数最大的项aj,M/aj中p的次数小于等于M/ak,其中ak为a1,a2,..,an中除aj外其他的n-1个项之一,而M/aj中p的次数为r1+r2+..+rn-rmax。

因此,(M/a1,M/a2,..,M/an)中p的次数为r1+r2+..+rn-rmax,从而M/(M/a1,M/a2,..,M/an)中p的次数为rmax。

上述的p并没有做任何限制。由于a1,a2,..,an中包含的所有素因子在M/(M/a1,M/a2,..,M/an)中都为a1,a2,..,an中的最高次数,故有[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an)成立。

得证。

定理1对于2个数的情况为[a,b]=ab/(ab/a,ab/b)=ab/(b,a)=ab/(a,b),即[a,b]=ab/(a,b)。因此,定理1为2个数最小公倍数公式[a,b]=ab/(a,b)的扩展。利用定理1能够把求多个数的最小公倍数转化为求多个数的最大公约数。

2.多个数最大公约数的算法实现

根据定理1,求多个数最小公倍数可以转化为求多个数的最大公约数。求多个数的最大公约数(a1,a2,..,an)的传统方法是多次求两个数的最大公约数,即

(1)用辗转相除法[2]计算a1和a2的最大公约数(a1,a2)

(2)用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3)

(3)用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4)

(4)依此重复,直到求得(a1,a2,..,an)

上述方法需要n-1次辗转相除运算。

本文将两个数的辗转相除法扩展为n个数的辗转相除法,即用一次n个数的辗转相除法计算n个数的最大公约数,基本方法是采用反复用最小数模其它数的方法进行计算,依据是下面的定理2。

定理2:多个非负整数a1,a2,..,an,若aj>ai,i不等于j,则在a1,a2,..,an中用aj-ai替换aj,其最大公约数不变,即 (a1,a2,..,aj-1,aj,aj+1,..an)=(a1,a2,..,aj-1,aj-ai,aj+1,..an)。

例如:(34,24,56,68)=(34,24,56-34,68)=(34,24,22,68)。

证明:

根据最大公约数的交换律和结合率,有

(a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,ai-1,ai+1,..aj-1,aj+1,..an))(i>j情况),或者

(a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,aj-1,aj+1,..ai-1,ai+1,..an))(i

而对(a1,a2,..,aj-1,aj-ai,aj+1,..an),有

(a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,ai-1,ai+1,.. aj-1,aj+1,..an))(i>j情况),或者

(a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,aj-1,aj+1,.. ai-1,ai+1,..an))(i

因此只需证明(ai,aj)=( ai, aj-ai)即可。

由于(aj-ai)= aj-ai,因此ai,aj的任意公因子必然也是(aj-ai)的因子,即也是ai,( aj-ai)的公因子。由于aj = (aj-ai)+ai,因此ai,( aj-ai)的任意公因子必然也是aj的因子,即也是ai,aj的公因子。所以,ai,aj的最大公约数和ai,(aj-ai) 的最大公约数必须相等,即(ai,aj)=(ai,aj-ai)成立。

得证。

定理2类似于矩阵的初等变换,即

令一个向量的最大公约数为该向量各个分量的最大公约数。对于向量进行变换:在一个分量中减去另一个分量,新向量和原向量的最大公约数相等。

求多个数的最大公约数采用反复用最小数模其它数的方法,即对其他数用最小数多次去减,直到剩下比最小数更小的余数。令n个正整数为a1,a2,..,an,求多个数最大共约数的算法描述为:

(1)找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个

(2)aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4)

(3)转到(3)

(4)a1,a2,..,an的最大公约数为aj

例如:对于5个数34, 56, 78, 24, 85,有

(34, 56, 78, 24, 85)=(10,8,6,24,13)=(4,2,6,0,1)=(0,0,0,0,1)=1,

对于6个数12, 24, 30, 32, 36, 42,有

(12, 24, 30, 32, 36, 42)=(12,0,6,8,0,6)=(0,0,0,2,0,6)=(0,0,0,2,0,0)=2。

3. 多个数最小共倍数的算法实现

求多个数最小共倍数的算法为:

(1)计算m=a1*a2*..*an

(2)把a1,a2,..,an中的所有项ai用m/ai代换

(3)找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个

(4)aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(6)

(5)转到(3)

(6)最小公倍数为m/aj

上述算法在VC环境下用高级语言进行了编程实现,通过多组求5个随机数最小公倍数的实例,与标准方法进行了比较,验证了其正确性。标准计算方法为:求5个随机数最小公倍数通过求4次两个数的最小公倍数获得,而两个数的最小公倍数通过求两个数的最大公约数获得。

5. 结论

计算多个数的最小公倍数是常见的基本运算。n个数的最小公倍数可以表示成另外n个数的最大公约数,因而可以通过求多个数的最大公约数计算。求多个数最大公约数可采用向量转换算法一次性求得。

相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!

推荐阅读:

怎样操作Angular实现数据请求

杰易OA办公自动化系统6.0
杰易OA办公自动化系统6.0

基于Intranet/Internet 的Web下的办公自动化系统,采用了当今最先进的PHP技术,是综合大量用户的需求,经过充分的用户论证的基础上开发出来的,独特的即时信息、短信、电子邮件系统、完善的工作流、数据库安全备份等功能使得信息在企业内部传递效率极大提高,信息传递过程中耗费降到最低。办公人员得以从繁杂的日常办公事务处理中解放出来,参与更多的富于思考性和创造性的工作。系统力求突出体系结构简明

下载

如何操作node使用async 控制并发

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
拼多多赚钱的5种方法 拼多多赚钱的5种方法
拼多多赚钱的5种方法 拼多多赚钱的5种方法

在拼多多上赚钱主要可以通过无货源模式一件代发、精细化运营特色店铺、参与官方高流量活动、利用拼团机制社交裂变,以及成为多多进宝推广员这5种方法实现。核心策略在于通过低成本、高效率的供应链管理与营销,利用平台社交电商红利实现盈利。

28

2026.01.26

edge浏览器怎样设置主页 edge浏览器自定义设置教程
edge浏览器怎样设置主页 edge浏览器自定义设置教程

在Edge浏览器中设置主页,请依次点击右上角“...”图标 > 设置 > 开始、主页和新建标签页。在“Microsoft Edge 启动时”选择“打开以下页面”,点击“添加新页面”并输入网址。若要使用主页按钮,需在“外观”设置中开启“显示主页按钮”并设定网址。

8

2026.01.26

苹果官方查询网站 苹果手机正品激活查询入口
苹果官方查询网站 苹果手机正品激活查询入口

苹果官方查询网站主要通过 checkcoverage.apple.com/cn/zh/ 进行,可用于查询序列号(SN)对应的保修状态、激活日期及技术支持服务。此外,查找丢失设备请使用 iCloud.com/find,购买信息与物流可访问 Apple (中国大陆) 订单状态页面。

31

2026.01.26

npd人格什么意思 npd人格有什么特征
npd人格什么意思 npd人格有什么特征

NPD(Narcissistic Personality Disorder)即自恋型人格障碍,是一种心理健康问题,特点是极度夸大自我重要性、需要过度赞美与关注,同时极度缺乏共情能力,背后常掩藏着低自尊和不安全感,影响人际关系、工作和生活,通常在青少年时期开始显现,需由专业人士诊断。

3

2026.01.26

windows安全中心怎么关闭 windows安全中心怎么执行操作
windows安全中心怎么关闭 windows安全中心怎么执行操作

关闭Windows安全中心(Windows Defender)可通过系统设置暂时关闭,或使用组策略/注册表永久关闭。最简单的方法是:进入设置 > 隐私和安全性 > Windows安全中心 > 病毒和威胁防护 > 管理设置,将实时保护等选项关闭。

5

2026.01.26

2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】
2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】

铁路12306提供起售时间查询、起售提醒、购票预填、候补购票及误购限时免费退票五项服务,并强调官方渠道唯一性与信息安全。

35

2026.01.26

个人所得税税率表2026 个人所得税率最新税率表
个人所得税税率表2026 个人所得税率最新税率表

以工资薪金所得为例,应纳税额 = 应纳税所得额 × 税率 - 速算扣除数。应纳税所得额 = 月度收入 - 5000 元 - 专项扣除 - 专项附加扣除 - 依法确定的其他扣除。假设某员工月工资 10000 元,专项扣除 1000 元,专项附加扣除 2000 元,当月应纳税所得额为 10000 - 5000 - 1000 - 2000 = 2000 元,对应税率为 3%,速算扣除数为 0,则当月应纳税额为 2000×3% = 60 元。

12

2026.01.26

oppo云服务官网登录入口 oppo云服务登录手机版
oppo云服务官网登录入口 oppo云服务登录手机版

oppo云服务https://cloud.oppo.com/可以在云端安全存储您的照片、视频、联系人、便签等重要数据。当您的手机数据意外丢失或者需要更换手机时,可以随时将这些存储在云端的数据快速恢复到手机中。

40

2026.01.26

抖币充值官方网站 抖币性价比充值链接地址
抖币充值官方网站 抖币性价比充值链接地址

网页端充值步骤:打开浏览器,输入https://www.douyin.com,登录账号;点击右上角头像,选择“钱包”;进入“充值中心”,操作和APP端一致。注意:切勿通过第三方链接、二维码充值,谨防受骗

7

2026.01.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
React 教程
React 教程

共58课时 | 4.1万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 2.5万人学习

Bootstrap 5教程
Bootstrap 5教程

共46课时 | 3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号