0

0

PHP实现二叉树深度优先遍历(前序、中序、后序)和广度优先遍历(层次)

不言

不言

发布时间:2018-04-20 13:08:00

|

2149人浏览过

|

来源于php中文网

原创

这篇文章主要介绍了php实现二叉树深度优先遍历(前序、中序、后序)和广度优先遍历(层次),结合实例形式详细分析了php针对二叉树的深度优先遍历与广度优先遍历相关操作技巧与注意事项,需要的朋友可以参考下

本文实例讲述了PHP实现二叉树深度优先遍历(前序、中序、后序)和广度优先遍历(层次)。分享给大家供大家参考,具体如下:

前言:

深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:

前序遍历:根节点->左子树->右子树
中序遍历:左子树->根节点->右子树
后序遍历:左子树->右子树->根节点

立即学习PHP免费学习笔记(深入)”;

广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。

例如对于一下这棵树:

深度优先遍历:

前序遍历:10 8 7 9 12 11 13
中序遍历:7 8 9 10 11 12 13
后序遍历:7 9 8 11 13 12 10

广度优先遍历:

层次遍历:10 8 12 7 9 11 13

二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。

深度优先遍历:

1、前序遍历:

独响
独响

一个轻笔记+角色扮演的app

下载


/**
* 前序遍历(递归方法)
*/
private function pre_order1($root)
{
    if (!is_null($root)) {
      //这里用到常量__FUNCTION__,获取当前函数名,好处是假如修改函数名的时候,里面的实现不用修改
      $function = __FUNCTION__;
      echo $root->key . " ";
      $this->$function($root->left);
      $this->$function($root->right);
    }
}
/**
* 前序遍历(非递归方法)
* 因为当遍历过根节点之后还要回来,所以必须将其存起来。考虑到后进先出的特点,选用栈存储。
*/
private function pre_order2($root)
{
    //    $stack = new splstack();
    //    $stack->push($root);
    //    while(!$stack->isEmpty()){
    //      $node = $stack->pop();
    //      echo $node->key.' ';
    //      if(!is_null($node->right)){
    //        $stack->push($node->right);
    //      }
    //      if(!is_null($node->left)){
    //        $stack->push($node->left);
    //      }
    //    }
    if (is_null($root)) {
      return;
    }
    $stack = new splstack();
    $node = $root;
    while (!is_null($node) || !$stack->isEmpty()) {
      while (!is_null($node)) {
        //只要结点不为空就应该入栈保存,与其左右结点无关
        $stack->push($node);
        echo $node->key . ' ';
        $node = $node->left;
      }
      $node = $stack->pop();
      $node = $node->right;
    }
}
//前序遍历
public function PreOrder()
{
    // 所在对象中的tree属性保存了一个树的引用
    //   $this->pre_order1($this->tree->root);
    $this->pre_order2($this->tree->root);
}

说明:1、我将所有的遍历方法都封装在一个类 traverse 里面了。2、pre_order2方法中,在使用栈的过程中,我使用的是PHP标准库SPL提供的splstack,如果你们习惯使用数组的话,可以使用 array_push() array_pop() 模拟实现。

2、中序遍历:


/**
* 中序遍历(递归方法)
*/
private function mid_order1($root)
{
    if (!is_null($root)) {
      $function = __FUNCTION__;
      $this->$function($root->left);
      echo $root->key . " ";
      $this->$function($root->right);
    }
}
/**
* 中序遍历(非递归方法)
* 因为当遍历过根节点之后还要回来,所以必须将其存起来。考虑到后进先出的特点,选用栈存储。
*/
private function mid_order2($root)
{
    if (is_null($root)) {
      return;
    }
    $stack = new splstack();
    $node = $root;
    while (!is_null($node) || !$stack->isEmpty()) {
      while (!is_null($node)) {
        $stack->push($node);
        $node = $node->left;
      }
      $node = $stack->pop();
      echo $node->key . ' ';
      $node = $node->right;
    }
}
//中序遍历
public function MidOrder()
{
    //    $this->mid_order1($this->tree->root);
    $this->mid_order2($this->tree->root);
}

3、后序遍历:


/**
* 后序遍历(递归方法)
*/
private function post_order1($root)
{
    if (!is_null($root)) {
      $function = __FUNCTION__;
      $this->$function($root->left);
      $this->$function($root->right);
      echo $root->key . " ";
    }
}
/**
* 后序遍历(非递归方法)
* 因为当遍历过根节点之后还要回来,所以必须将其存起来。考虑到后进先出的特点,选用栈存储。
* 由于在访问了左子节点后怎么跳到右子节点是难点,这里使用一个标识lastVisited来标识上一次访问的结点
*/
private function post_order2($root)
{
    if (is_null($root)) {
      return;
    }
    $node = $root;
    $stack = new splstack();
    //保存上一次访问的结点引用
    $lastVisited = NULL;
    $stack->push($node);
    while(!$stack->isEmpty()){
      $node = $stack->top();//获取栈顶元素但不弹出
      if(($node->left == NULL && $node->right == NULL) || ($node->right == NULL && $lastVisited == $node->left) || ($lastVisited == $node->right)){
        echo $node->key.' ';
        $lastVisited = $node;
        $stack->pop();
      }else{
        if($node->right){
          $stack->push($node->right);
        }
        if($node->left){
          $stack->push($node->left);
        }
      }
    }
}
//后序遍历
public function PostOrder()
{
    //    $this->post_order1($this->tree->root);
    $this->post_order2($this->tree->root);
}

广度优先遍历:

1、层次遍历:


/**
* 层次遍历(递归方法)
* 由于是按层逐层遍历,因此传递树的层数
*/
private function level_order1($root,$level){
    if($root == NULL || $level < 1){
      return;
    }
    if($level == 1){
      echo $root->key.' ';
      return;
    }
    if(!is_null($root->left)){
      $this->level_order1($root->left,$level - 1);
    }
    if(!is_null($root->right)){
      $this->level_order1($root->right,$level - 1);
    }
}
/**
* 层次遍历(非递归方法)
* 每一层从左向右输出
元素需要储存有先进先出的特性,所以选用队列存储。
*/
private function level_order2($root){
    if(is_null($root)){
      return;
    }
    $node = $root;
    //利用队列实现
//    $queue = array();
//    array_push($queue,$node);
//
//    while(!is_null($node = array_shift($queue))){
//      echo $node->key.' ';
//      if(!is_null($node->left)){
//        array_push($queue,$node->left);
//      }
//      if(!is_null($node->right)){
//        array_push($queue,$node->right);
//      }
//    }
    $queue = new splqueue();
    $queue->enqueue($node);
    while(!$queue->isEmpty()){
      $node = $queue->dequeue();
      echo $node->key.' ';
      if (!is_null($node->left)) {
        $queue->enqueue($node->left);
      }
      if (!is_null($node->right)) {
        $queue->enqueue($node->right);
      }
    }
}
//层次遍历
public function LevelOrder(){
//    $level = $this->getdepth($this->tree->root);
//    for($i = 1;$i <= $level;$i ++){
//      $this->level_order1($this->tree->root,$i);
//    }
    $this->level_order2($this->tree->root);
}
//获取树的层数
private function getdepth($root){
    if(is_null($root)){
      return 0;
    }
    $left = getdepth($root -> left);
    $right = getdepth($root -> right);
    $depth = ($left > $right ? $left : $right) + 1;
    return $depth;
}

说明:level_order2方法中,在使用队列的过程中,我使用的是PHP标准库SPL提供的splqueue,如果你们习惯使用数组的话,可以使用 array_push() array_shift() 模拟实现。

使用:

现在我们来看看客户端代码:


class Client
{
  public static function Main()
  {
    try {
      //实现文件的自动加载
      function autoload($class)
      {
        include strtolower($class) . '.php';
      }
      spl_autoload_register('autoload');
      $arr = array(10, 8, 12, 7, 9, 11, 13);
      $tree = new Bst();
//      $tree = new Avl();
//      $tree = new Rbt();
      $tree->init($arr);
      $traverse = new traverse($tree);
      $traverse->PreOrder();
//      $traverse->MidOrder();
//      $traverse->PostOrder();
//      $traverse->LevelOrder();
    } catch (Exception $e) {
      echo $e->getMessage();
    }
  }
}
CLient::Main();

补充:

1. 在客户端中所使用的三个类 Bst、Avl、Rbt 大家可以参考前面一篇:《PHP实现绘制二叉树图形显示功能详解》

2. 为什么我推荐大家使用SPL标准库中提供的splstacksplqueue呢?这是我在某一篇文章中看到的:虽然我们可以使用传统的变量类型来描述数据结构,例如用数组来描述堆栈(Strack)– 然后使用对应的方式 pop 和 push(array_pop()array_push()),但你得时刻小心,因为毕竟它们不是专门用于描述数据结构的 – 一次误操作就有可能破坏该堆栈。而 SPL 的 SplStack 对象则严格以堆栈的形式描述数据,并提供对应的方法。同时,这样的代码应该也能理解它在操作堆栈而非某个数组,从而能让你的同伴更好的理解相应的代码,并且它更快。原文地址:PHP SPL,遗落的宝石

3. 本文相关参考文章: 《C语言二叉树常见操作详解【前序,中序,后序,层次遍历及非递归查找,统计个数,比较,求深度】》、《Java实现二叉树的深度优先遍历和广度优先遍历算法示例》

相关推荐:

PHP排序算法之冒泡排序(Bubble Sort)


相关文章

PHP速学教程(入门到精通)
PHP速学教程(入门到精通)

PHP怎么学习?PHP怎么入门?PHP在哪学?PHP怎么学才快?不用担心,这里为大家提供了PHP速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

php

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
拼多多赚钱的5种方法 拼多多赚钱的5种方法
拼多多赚钱的5种方法 拼多多赚钱的5种方法

在拼多多上赚钱主要可以通过无货源模式一件代发、精细化运营特色店铺、参与官方高流量活动、利用拼团机制社交裂变,以及成为多多进宝推广员这5种方法实现。核心策略在于通过低成本、高效率的供应链管理与营销,利用平台社交电商红利实现盈利。

20

2026.01.26

edge浏览器怎样设置主页 edge浏览器自定义设置教程
edge浏览器怎样设置主页 edge浏览器自定义设置教程

在Edge浏览器中设置主页,请依次点击右上角“...”图标 > 设置 > 开始、主页和新建标签页。在“Microsoft Edge 启动时”选择“打开以下页面”,点击“添加新页面”并输入网址。若要使用主页按钮,需在“外观”设置中开启“显示主页按钮”并设定网址。

6

2026.01.26

苹果官方查询网站 苹果手机正品激活查询入口
苹果官方查询网站 苹果手机正品激活查询入口

苹果官方查询网站主要通过 checkcoverage.apple.com/cn/zh/ 进行,可用于查询序列号(SN)对应的保修状态、激活日期及技术支持服务。此外,查找丢失设备请使用 iCloud.com/find,购买信息与物流可访问 Apple (中国大陆) 订单状态页面。

20

2026.01.26

npd人格什么意思 npd人格有什么特征
npd人格什么意思 npd人格有什么特征

NPD(Narcissistic Personality Disorder)即自恋型人格障碍,是一种心理健康问题,特点是极度夸大自我重要性、需要过度赞美与关注,同时极度缺乏共情能力,背后常掩藏着低自尊和不安全感,影响人际关系、工作和生活,通常在青少年时期开始显现,需由专业人士诊断。

3

2026.01.26

windows安全中心怎么关闭 windows安全中心怎么执行操作
windows安全中心怎么关闭 windows安全中心怎么执行操作

关闭Windows安全中心(Windows Defender)可通过系统设置暂时关闭,或使用组策略/注册表永久关闭。最简单的方法是:进入设置 > 隐私和安全性 > Windows安全中心 > 病毒和威胁防护 > 管理设置,将实时保护等选项关闭。

5

2026.01.26

2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】
2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】

铁路12306提供起售时间查询、起售提醒、购票预填、候补购票及误购限时免费退票五项服务,并强调官方渠道唯一性与信息安全。

29

2026.01.26

个人所得税税率表2026 个人所得税率最新税率表
个人所得税税率表2026 个人所得税率最新税率表

以工资薪金所得为例,应纳税额 = 应纳税所得额 × 税率 - 速算扣除数。应纳税所得额 = 月度收入 - 5000 元 - 专项扣除 - 专项附加扣除 - 依法确定的其他扣除。假设某员工月工资 10000 元,专项扣除 1000 元,专项附加扣除 2000 元,当月应纳税所得额为 10000 - 5000 - 1000 - 2000 = 2000 元,对应税率为 3%,速算扣除数为 0,则当月应纳税额为 2000×3% = 60 元。

9

2026.01.26

oppo云服务官网登录入口 oppo云服务登录手机版
oppo云服务官网登录入口 oppo云服务登录手机版

oppo云服务https://cloud.oppo.com/可以在云端安全存储您的照片、视频、联系人、便签等重要数据。当您的手机数据意外丢失或者需要更换手机时,可以随时将这些存储在云端的数据快速恢复到手机中。

26

2026.01.26

抖币充值官方网站 抖币性价比充值链接地址
抖币充值官方网站 抖币性价比充值链接地址

网页端充值步骤:打开浏览器,输入https://www.douyin.com,登录账号;点击右上角头像,选择“钱包”;进入“充值中心”,操作和APP端一致。注意:切勿通过第三方链接、二维码充值,谨防受骗

6

2026.01.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
PHP课程
PHP课程

共137课时 | 9.5万人学习

JavaScript ES5基础线上课程教学
JavaScript ES5基础线上课程教学

共6课时 | 11.2万人学习

PHP新手语法线上课程教学
PHP新手语法线上课程教学

共13课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号