0

0

Mahout视频教程的资源推荐

黄舟

黄舟

发布时间:2017-09-01 10:01:39

|

1731人浏览过

|

来源于php中文网

原创

mahout提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用 apache hadoop 库,mahout 可以有效地扩展到云中。

`E$TQIW}D~@YQY8(3Q}MUSS.png

该老师讲课风格:

教师讲课深入浅出,条理清楚,层层剖析,环环相扣,论证严密,结构严谨,用思维的逻辑力量吸引学生的注意力,用理智控制课堂教学进程。学生通过听教师的讲授,不仅学到知识,也受到思维的训练,还受到教师严谨的治学态度的熏陶和感染

本视频中较为难点是逻辑回归分类器_贝叶斯分类器_1了:

1.背景

首先,在文章的开头,先提出几个问题,如果这些问题你都答得上来,那么本文你就无需阅读了,或者你阅读的动机纯粹是给本文挑毛病,当然我也无比欢迎,请发送邮件“毛病の朴素贝叶斯”发送至297314262@qq.com,我会认真阅读你的来信。

By the way,如果阅读完本文,你还是无法回答以下问题,那么也请你邮件通知我,我会尽量解答你的疑惑。

朴素贝叶斯分类器中的“朴素”特指此分类器的什么特性

朴素贝叶斯分类器与极大似然估计(MLE)、最大后验概率(MAP)的关系

朴素贝叶斯分类、逻辑回归分类,生成模型、判决模型的关系

有监督学习和贝叶斯估计的关系

2.约定

那么,本文开始。首先,关于本文可能出现的各种表达形式,在此做一番约定

大写字母,如X,表示随机变量;如果X是多维变量,那么下标i表示第i维变量,即Xi

元典智库
元典智库

元典智库:智能开放的法律搜索引擎

下载

小写字母,如Xij,表示变量的一种取值(Xi的第j种取值)

3.贝叶斯估计与有监督学习

好的,那么首先回答第4个问题,如何用贝叶斯估计解决有监督学习问题?

对于有监督学习,我们的目标实际上是估计一个目标函数f : X->Y,,或目标分布P(Y|X),其中X是样本的各个feature组成的多维变量,Y是样本的实际分类结果。假设样本X的取值为xk,那么,根据贝叶斯定理,分类结果为yi的概率应该为:

[$K4{O{Q%PS(%08P_HM)}O4.png

因此,要估计P(Y=yi|X=xk),只要根据样本,求出P(X=xk|Y=yi)的所有估计,以及P(Y=yi)的所有估计,就可以了。此后的分类过程,就是求另P(Y=yi|X=xk)最大的那个yi就可以了。那么由此可见,利用贝叶斯估计,可以解决有监督学习的问题。

4.分类器的“朴素”特性

接下来,回答第1个问题,何为“朴素”?

从第3节的分析里,我们知道,要求得P(Y=yi|X=xk),就需要知道P(X=xk|Y=yi)的所有估计,以及P(Y=yi)的所有估计,那么假设X为N维变量,其每一维变量都有两种取值(如文本分类中常见的各个term出现与否对应的取值0/1),而Y也有两种类别,那么就需要求出2*(2^N - 1)个估计(注意,由于在给定Y为某一类别的情况下,X的各个取值的概率和为1,所以实际需要估计的值为2^N - 1)。可以想象,对于N很大的情况(文本分类时,term的可能取值是非常大的),这一估计的计算量是巨大的。那么如何减少需要估计的量,而使得贝叶斯估计方法具有可行性呢?这里,就引入一种假设:

假设:在给定Y=yi的条件下,X的各维变量彼此相互独立。

那么,在这一假设的条件下,P(X=xk|Y=yi)=P(X1=x1j1|Y=yi)P(X2=x2j2|Y=yi)...P(Xn=xnjn|Y=yi),也就是说,此时只需要求出N个估计就可以了。因此,这一假设将贝叶斯估计的计算量从2*(2^N - 1)降为了N,使这一分类器具有了实际可行性。那么这一假设就成为朴素特性。

5.极大似然估计和最大后验概率解

接下来,回答第2个问题,首选我们将极大似然估计法应用于朴素贝叶斯分类器的求解过程。

上面说了,P(X=xk|Y=yi)的求解,可以转化为对P(X1=x1j1|Y=yi)、P(X2=x2j2|Y=yi)、... P(Xn=xnjn|Y=yi)的求解,那么如何利用极大似然估计法求这些值呢?

首选我们需要理解什么是极大似然估计,实际上,在我们的概率论课本里,关于极大似然估计的讲解,都是在解决无监督学习问题,而看完本节内容后,你应该明白,在朴素特性下,用极大似然估计解决有监督学习问题,实际上就是在各个类别的条件下,用极大似然估计解决无监督学习问题。

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
2026赚钱平台入口大全
2026赚钱平台入口大全

2026年最新赚钱平台入口汇总,涵盖任务众包、内容创作、电商运营、技能变现等多类正规渠道,助你轻松开启副业增收之路。阅读专题下面的文章了解更多详细内容。

54

2026.01.31

高干文在线阅读网站大全
高干文在线阅读网站大全

汇集热门1v1高干文免费阅读资源,涵盖都市言情、京味大院、军旅高干等经典题材,情节紧凑、人物鲜明。阅读专题下面的文章了解更多详细内容。

40

2026.01.31

无需付费的漫画app大全
无需付费的漫画app大全

想找真正免费又无套路的漫画App?本合集精选多款永久免费、资源丰富、无广告干扰的优质漫画应用,涵盖国漫、日漫、韩漫及经典老番,满足各类阅读需求。阅读专题下面的文章了解更多详细内容。

50

2026.01.31

漫画免费在线观看地址大全
漫画免费在线观看地址大全

想找免费又资源丰富的漫画网站?本合集精选2025-2026年热门平台,涵盖国漫、日漫、韩漫等多类型作品,支持高清流畅阅读与离线缓存。阅读专题下面的文章了解更多详细内容。

12

2026.01.31

漫画防走失登陆入口大全
漫画防走失登陆入口大全

2026最新漫画防走失登录入口合集,汇总多个稳定可用网址,助你畅享高清无广告漫画阅读体验。阅读专题下面的文章了解更多详细内容。

13

2026.01.31

php多线程怎么实现
php多线程怎么实现

PHP本身不支持原生多线程,但可通过扩展如pthreads、Swoole或结合多进程、协程等方式实现并发处理。阅读专题下面的文章了解更多详细内容。

1

2026.01.31

php如何运行环境
php如何运行环境

本合集详细介绍PHP运行环境的搭建与配置方法,涵盖Windows、Linux及Mac系统下的安装步骤、常见问题及解决方案。阅读专题下面的文章了解更多详细内容。

0

2026.01.31

php环境变量如何设置
php环境变量如何设置

本合集详细讲解PHP环境变量的设置方法,涵盖Windows、Linux及常见服务器环境配置技巧,助你快速掌握环境变量的正确配置。阅读专题下面的文章了解更多详细内容。

0

2026.01.31

php图片如何上传
php图片如何上传

本合集涵盖PHP图片上传的核心方法、安全处理及常见问题解决方案,适合初学者与进阶开发者。阅读专题下面的文章了解更多详细内容。

2

2026.01.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
尚学堂Mahout视频教程
尚学堂Mahout视频教程

共18课时 | 3.2万人学习

RunnerGo从入门到精通
RunnerGo从入门到精通

共22课时 | 1.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号