0

0

求斐波那契(Fibonacci)数列通项的七种实现方法

高洛峰

高洛峰

发布时间:2017-01-14 16:41:34

|

2044人浏览过

|

来源于php中文网

原创

一:递归实现
使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1。
二:数组实现
空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快。
三:vector实现
时间复杂度是0(n),时间复杂度是0(1),就是不知道vector的效率高不高,当然vector有自己的属性会占用资源。
四:queue实现
当然队列比数组更适合实现斐波那契数列,时间复杂度和空间复杂度和vector一样,但队列太适合这里了,
f(n)=f(n-1)+f(n-2),f(n)只和f(n-1)和f(n-2)有关,f(n)入队列后,f(n-2)就可以出队列了。
五:迭代实现
迭代实现是最高效的,时间复杂度是0(n),空间复杂度是0(1)。
六:公式实现
百度的时候,发现原来斐波那契数列有公式的,所以可以使用公式来计算的。
由于double类型的精度还不够,所以程序算出来的结果会有误差,如果把公式展开计算,得出的结果就是正确的。
完整的实现代码如下:

#include "iostream"
#include "queue"
#include "cmath"
using namespace std;
int fib1(int index)     //递归实现
{
 if(index<1)
 {
  return -1;
 }
 if(index==1 || index==2)
  return 1;
 return fib1(index-1)+fib1(index-2);
}
int fib2(int index)     //数组实现
{
 if(index<1)
 {
  return -1;
 }
 if(index<3)
 {
  return 1;
 }
 int *a=new int[index];
 a[0]=a[1]=1;
 for(int i=2;i实现
{
 if(index<1)
 {
  return -1;
 }
 vector a(2,1);      //创建一个含有2个元素都为1的向量
 a.reserve(3);
 for(int i=2;iq;
 q.push(1);
 q.push(1);
 for(int i=2;i

七:二分矩阵方法

2016110316252934.png

如上图,Fibonacci 数列中任何一项可以用矩阵幂算出,而n次幂是可以在logn的时间内算出的。
下面贴出代码:

Dream Staging
Dream Staging

上传一张空房间的照片,AI 就会生成几十种专业设计和装饰的室内变化,包括各种风格和房间类型。

下载
void multiply(int c[2][2],int a[2][2],int b[2][2],int mod)
{
 int tmp[4];
 tmp[0]=a[0][0]*b[0][0]+a[0][1]*b[1][0];
 tmp[1]=a[0][0]*b[0][1]+a[0][1]*b[1][1];
 tmp[2]=a[1][0]*b[0][0]+a[1][1]*b[1][0];
 tmp[3]=a[1][0]*b[0][1]+a[1][1]*b[1][1];
 c[0][0]=tmp[0]%mod;
 c[0][1]=tmp[1]%mod;
 c[1][0]=tmp[2]%mod;
 c[1][1]=tmp[3]%mod;
}//计算矩阵乘法,c=a*b
int fibonacci(int n,int mod)//mod表示数字太大时需要模的数
{
 if(n==0)return 0;
 else if(n<=2)return 1;//这里表示第0项为0,第1,2项为1
 int a[2][2]={{1,1},{1,0}};
 int result[2][2]={{1,0},{0,1}};//初始化为单位矩阵
 int s;
 n-=2;
 while(n>0)
 {
  if(n%2 == 1)
   multiply(result,result,a,mod);
  multiply(a,a,a,mod);
  n /= 2;
 }//二分法求矩阵幂
 s=(result[0][0]+result[0][1])%mod;//结果
 return s;
}

附带的再贴上二分法计算a的n次方函数。

int pow(int a,int n)
{
 int ans=1;
 while(n)
 {
  if(n&1)
   ans*=a;
  a*=a;
  n>>=1;
 }
 return ans;
}

更多求斐波那契(Fibonacci)数列通项的七种实现方法相关文章请关注PHP中文网!

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
clawdbot ai使用教程 保姆级clawdbot部署安装手册
clawdbot ai使用教程 保姆级clawdbot部署安装手册

Clawdbot是一个“有灵魂”的AI助手,可以帮用户清空收件箱、发送电子邮件、管理日历、办理航班值机等等,并且可以接入用户常用的任何聊天APP,所有的操作均可通过WhatsApp、Telegram等平台完成,用户只需通过对话,就能操控设备自动执行各类任务。

15

2026.01.29

clawdbot龙虾机器人官网入口 clawdbot ai官方网站地址
clawdbot龙虾机器人官网入口 clawdbot ai官方网站地址

clawdbot龙虾机器人官网入口:https://clawd.bot/,clawdbot ai是一个“有灵魂”的AI助手,可以帮用户清空收件箱、发送电子邮件、管理日历、办理航班值机等等,并且可以接入用户常用的任何聊天APP,所有的操作均可通过WhatsApp、Telegram等平台完成,用户只需通过对话,就能操控设备自动执行各类任务。

12

2026.01.29

Golang 网络安全与加密实战
Golang 网络安全与加密实战

本专题系统讲解 Golang 在网络安全与加密技术中的应用,包括对称加密与非对称加密(AES、RSA)、哈希与数字签名、JWT身份认证、SSL/TLS 安全通信、常见网络攻击防范(如SQL注入、XSS、CSRF)及其防护措施。通过实战案例,帮助学习者掌握 如何使用 Go 语言保障网络通信的安全性,保护用户数据与隐私。

8

2026.01.29

俄罗斯Yandex引擎入口
俄罗斯Yandex引擎入口

2026年俄罗斯Yandex搜索引擎最新入口汇总,涵盖免登录、多语言支持、无广告视频播放及本地化服务等核心功能。阅读专题下面的文章了解更多详细内容。

546

2026.01.28

包子漫画在线官方入口大全
包子漫画在线官方入口大全

本合集汇总了包子漫画2026最新官方在线观看入口,涵盖备用域名、正版无广告链接及多端适配地址,助你畅享12700+高清漫画资源。阅读专题下面的文章了解更多详细内容。

194

2026.01.28

ao3中文版官网地址大全
ao3中文版官网地址大全

AO3最新中文版官网入口合集,汇总2026年主站及国内优化镜像链接,支持简体中文界面、无广告阅读与多设备同步。阅读专题下面的文章了解更多详细内容。

330

2026.01.28

php怎么写接口教程
php怎么写接口教程

本合集涵盖PHP接口开发基础、RESTful API设计、数据交互与安全处理等实用教程,助你快速掌握PHP接口编写技巧。阅读专题下面的文章了解更多详细内容。

11

2026.01.28

php中文乱码如何解决
php中文乱码如何解决

本文整理了php中文乱码如何解决及解决方法,阅读节专题下面的文章了解更多详细内容。

16

2026.01.28

Java 消息队列与异步架构实战
Java 消息队列与异步架构实战

本专题系统讲解 Java 在消息队列与异步系统架构中的核心应用,涵盖消息队列基本原理、Kafka 与 RabbitMQ 的使用场景对比、生产者与消费者模型、消息可靠性与顺序性保障、重复消费与幂等处理,以及在高并发系统中的异步解耦设计。通过实战案例,帮助学习者掌握 使用 Java 构建高吞吐、高可靠异步消息系统的完整思路。

11

2026.01.28

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号