Python多线程在I/O密集型任务中有效,但CPU密集型任务受GIL限制无法利用多核;应优先用ThreadPoolExecutor管理线程,共享数据需加锁或用queue.Queue,守护线程不保证执行完成。

Python 的多线程在 I/O 密集型任务中确实有用,但在 CPU 密集型任务中基本无效——这是由 GIL(全局解释器锁)决定的,不是写法问题,也不是优化能绕过的。
为什么 threading 跑不满多核 CPU
CPython 解释器为保证内存管理安全,同一时刻只允许一个线程执行 Python 字节码。GIL 会强制串行化 CPU 密集操作,哪怕你开了 10 个 Thread,sum([i**2 for i in range(10**7)]) 这类计算也几乎不会比单线程快。
- 验证方式:用
time.perf_counter()测多线程 vs 单线程纯计算耗时,结果通常接近甚至更慢(线程切换开销) - 真正受益的场景:发 HTTP 请求、读写文件、等待数据库响应——这些操作会自动释放
GIL - 替代方案:CPU 密集任务请直接换
multiprocessing或concurrent.futures.ProcessPoolExecutor
ThreadPoolExecutor 比原生 Thread 更实用
手动管理 Thread 对象容易出错:忘记 join()、异常未捕获、资源泄漏。而 ThreadPoolExecutor 自动处理生命周期和异常传播,适合绝大多数实际需求。
- 提交任务用
submit()(返回Future)或map()(批量、保序) - 默认线程数是
min(32, (os.cpu_count() or 1) + 4),I/O 密集可适当调高,比如max_workers=20 -
Future.result()会阻塞,需配合timeout参数防卡死;异常会在调用result()时重新抛出
from concurrent.futures import ThreadPoolExecutor
import requests
def fetch_url(url):
return len(requests.get(url).content)
with ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(fetch_url, u) for u in urls]
results = [f.result(timeout=10) for f in futures]
共享变量必须加锁,但别乱用 Lock
多个线程读写同一个字典、列表或自定义对象时,不加同步机制会导致数据错乱——这不是概率问题,是必然发生,只是时机难复现。
前后端完整代码包括本馆动态,新书来了,书籍榜单,服务指南,进馆预约,活动讲座预约等功能,采用腾讯提供的小程序云开发解决方案,无须服务器和域名 预约管理:开始/截止时间/人数均可灵活设置,可以自定义客户预约填写的数据项 预约凭证:支持线下到场后校验签到/核销/二维码自助签到等多种方式详尽的 预约数据:支持预约名单数据导出Excel,打印
立即学习“Python免费学习笔记(深入)”;
- 简单计数用
threading.local()更轻量(每个线程独立副本),适合存储请求上下文、数据库连接等 - 真要跨线程共享状态,优先用
queue.Queue(线程安全)传数据,而不是裸露全局变量 -
Lock要成对出现:try/finally或with lock:,否则一旦异常跳过release()就死锁
守护线程(daemon=True)不是“后台服务”
设置 daemon=True 只表示:主线程退出时,该子线程会被强制终止,不管它是否跑完。它不提供任何后台保活、崩溃恢复或资源清理能力。
- 适合做日志轮转、心跳上报等“尽力而为”的辅助任务
- 绝对不能用于写文件、提交事务、关闭连接等需要确保完成的操作
- 若需优雅退出,应配合
threading.Event控制循环条件,并在主线程join()等待其自然结束
多线程真正的难点不在启动多少个线程,而在厘清哪些数据被谁读写、哪些操作必须原子、哪些阻塞不可接受——GIL 是限制,但竞态和逻辑混乱才是线上事故的常见源头。










